七年级下册数学第一章整式的运算教案小学教育小学学案小学教育小学学案.pdf

上传人:Che****ry 文档编号:95962997 上传时间:2023-09-05 格式:PDF 页数:12 大小:698.78KB
返回 下载 相关 举报
七年级下册数学第一章整式的运算教案小学教育小学学案小学教育小学学案.pdf_第1页
第1页 / 共12页
七年级下册数学第一章整式的运算教案小学教育小学学案小学教育小学学案.pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《七年级下册数学第一章整式的运算教案小学教育小学学案小学教育小学学案.pdf》由会员分享,可在线阅读,更多相关《七年级下册数学第一章整式的运算教案小学教育小学学案小学教育小学学案.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备 欢迎下载 第一章 整式的运算复习 一、整章知识网络 整式的加减 同底数幂的乘法、幂的乘方、积的乘方 幂 同底数幂的除法、零指数和负整数指数幂 单项式乘以单项式 整式及其运算 乘法分配律 整式的乘法 单项式乘以多项式 乘法分配律 多项式乘以多项式、平方差公式、完全平方公式 单项式除以单项式 整式的除法 乘法分配律 多项式除以单项式 二、整式的考点及知识细化 考点一、整式的有关概念 1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式:只含有数字与字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不

2、能用带分数表示,如ba2314,这种表示就是错误的,应写成ba2313。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如cba235是 6 次单项式。注意:单项式的系数一定不能忽略符号!注意:1、单项式中的数与字母或者字母与字母之间都是乘积关系,如xx212,所以2x是单项式,而x2 不是单项式。2、如果一个单项式只含有字母因数,则它的系数就是1 或者-1,此时“1”通常省略不写;是常数,应作为单项式的系数;单项式的系数包括它前面的符号。3、单项式的次数是所有字母的指数和,数的指数和的指数不能与学习必备 欢迎下载 其他字母的指数相加作为单项式的次数,如4232yx的次数是 6(=2+4

3、),而不是 10.4、非零常数的次数是0,而不是 1。如,3 是一个非零常数,这个单项式中没有字母,因此次数为 0.5、区分代数式中的整式的关键是看分母中是否含有字母,如222yx 是整式,但xy的分母中含有字母,所以它不是整式。考点二、多项式 1、多项式:几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。单项式和多项式统称整式。用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出

4、其字母的值,需要利用技巧,“整体”代入。2、(1)同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。注意:几个单项式是同类项的条件只有两个:所含字母相同 相同字母的指数分别相同。同时具备这两个条件的单项式是同类项,缺一不可 几个单项式是否是同类项,与他们的系数无关,与字母的排列顺序无关。(2)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。注意:不是同类项不能合并 解题方法总结:1、单项式的次数是把所有字母的指数相加,不包含数与的指数;多项式的次数是把多项式中每项的次数幂

5、的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必

6、备欢学习必备 欢迎下载 例题:考点:同类项概念、单项式概念(2010 株洲)在2222,2,3,x yxyx yxy 四个代数式中,找出两个同类项并 合并 (2008 济南)如果23321133abxyx y与是同类项,那么 a,b 的值为:(2009 烟台)若523mxy与3nx y的和是单项式,则:m=_,n=_ 3、去括号法则 括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。括号前是“”,把括号和它前面的“”号一起去掉,括号里各项都变号。注意:去括号法则的理论实质是乘法对加法的分配率。例如+(a+b-c)=(+1)(a+b-c)=a+b-c;-(a+b-c)=(-1

7、)(a+b-c)=-a-b+c 例题:考点:去括号和添括号法则(2009 江西)化简:-2(21)aa的结果是 _(2010 广州)下列运算正确的是:A3(1)31xx B3(1)31xx C3(1)33xx D3(1)33xx 4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。整式的乘法:同底数幂的乘法法则:),(都是正整数nmaaanmnm 幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含

8、有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 注意:1、三个或三个以上同底数幂相乘时,也具有这一性质,如pnmpnmaaaa(m、n、p 均为正整数)2、此性质可以逆用 3、底数不同的幂相乘,不能应用此法则 4、底数是和、差或者其他形式的幂相乘,应把这些和

9、或差看作一个整体,如32)()(yxyx 幂的乘方法则:),(都是正整数)(nmaamnnm 注意:1、此公式可以拓展成为:pnmpnmaa)((m、n、p 均为正整数)2、区别幂的乘方与同底数的幂的乘法。这也是选择题、填空题、计算题考察的重点。3、此性质可以逆用 积的乘方法则:)()(都是正整数nbaabnnn (am)n=am n(m、n 都是正整数)幂的乘方,底数 a,指数 mn。(ab)n=anbn(N是正整数)。积的乘方等于每个因式分别乘方后的积。解题方法归纳:1、确定好是否是同底数幂的乘法,如果底数不同,进行适当的转化,使之成为同底数幂。mnmaaammaaa2幂的除法零指数和负整

10、数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎

11、下载 注意:1、此公式可以拓展成为:nnnncbaabc)((n为正整数)2、此性质可以逆用 零指数幂和负整数指数幂:1、零指数幂:);0(10 aa 2、负整数指数幂:),0(1是正整数paaapp 整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。3、多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。4、单项式除以单项式:法则:单项式相除

12、,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。5、多项式除以单项式:法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。解题方法归纳:1、对于出现同底数幂的除法的式子可直接运用其除法法则计算,若不是同底数,则进行转化,使之成解题方法归纳:整式乘法实质上就是运用乘法交换律、结合律、分配律、有理数的乘法法则和同底数幂的乘法法则进幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除

13、以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 整式乘法公式:1、平方差公式:22)(bababa 注意:1、平方差公式中的 a、b 可以是具体的数,也可以是字母、单项式、多项式,也就是说,a、b 代表任一

14、个代数式。如)14)(12)(12(2aaa 2、此公式可以逆用 2、完全平方公式:2222)(bababa 2222)(bababa 注意:1、公式中的 a、b 可以是具体的数,也可以是字母、单项式、多项式,也就是说,a、b 代表任一个代数式。2、公式右边 2ab 的符号取决于左边二项式中两项的符号。若左边的两项同号,则 2ab 的符号为“+”,若这两项异号,则 2ab 的符号为“-”。3、此公式可以逆用。4、可以拓展为:bcacabcbacba222)(2222 例题:考点:幂的乘法、乘方(2009 吉林)计算:23(3)aa=_(2010 成都)化简:23(3)2xx的结果是:A56x

15、解题方法归纳:完全平方公式可以变形成为以下几种:abbaba2)(222;abbaba2)(222;abbaba4)()(22;abbaba4)()(22 幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字

16、母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 B53x C52x D44x(2009 烟台)计算:234(3)a b的结果是:_ (2009 烟台)若523mxy与3nx y的和是单项式,则:(2009 泰安)若223,45,2_xyxy则 整式的除法:)0,(anmaaanmnm都是正整数当 m=n 时,01mnm naaaa 注意:幂的指数、底数都应是最简的;底数中系数不能为负;幂的底数是积的形式时,要再用一次(ab)n=an bn.(1)零指数幂:规定“

17、不等于零的任何实数的零次幂都等于 1”,即01(0)aa(2)负整数指数幂:规定任何不等于零的实数的-n(n 是正整数)次幂,都等于这个数的 n 次幂的倒数,即1(0)nnaaa 注意:引入零指数幂和负整数幂以后,指数的范围由正整数扩大到整数,这里需要强调的是指数范围扩大后,幂的性质仍然成立,但必须注意,当指数是零aman=am n(a0,m,n 都是正整数,且 m n)。同底数幂相乘,底数不变,指数相减.幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项

18、式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 或负整数时,底数不能为零 例题:考点:整式的除法(2009 南宁)计算:22()a ba=_(2009 安徽)一个矩形的面积为22aaba,宽为 a,则矩形的长为_

19、 注意:(1)单项式乘单项式的结果仍然是单项式。(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。(3)计算时要注意符号问题,多项式的每一项都包括它前 面的符号,同时还要注意单项式的符号。(4)多项式与多项式相乘的展开式中,有同类项的要合并 同类项。(5)公式中的字母可以表示数,也可以表示单项式或多项 式。(6)),0(1);0(10为正整数paaaaapp (7)多项式除以单项式,先把这个多项式的每一项除以这 个单项式,再把所得的商相加,单项式除以多项式是 不能这么计算的 注意:多项式除以单项式,所得的商仍是多项式,并且 商的项数和原多项式的项数相同。例题:考点:整

20、式的混合运算(2009 福州)下列运算中,正确的是:A 2xxx B 21xx C 336xx D 824xxx(2010 哈尔滨)下列运算,正确的是:A 325xxx B 23xxx C 322xxx 幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个

21、单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 D 3322xx (2009 鄂州)下列计算中,正确的是:A 426xxx B 236xx C 235xyxy D 632xxx 考点:整式的混合运算-化简求值(2009 泉州)化简下面代数式并求值:(2)(2)(3),21xxxxx 其中 (2010 温州)先化简,再求值:()()(2)ab ababa,其中1.5,2ab (2009 济南)化简:2(1)2(1)_

22、xx (2009 长沙)先化简,再求值:2212,3,3abababaab 其中 考点:整式的混合运算-整体带入(2008 金华)如果 x+y=-4,x-y=8,那么代数式=_ (2010 株洲)已知290 x ,求代数式22(1)(1)7 _x xx xx 幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是

23、错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 例题:考点:乘法公式灵活运用(完全平方公式的几种常用变形)(2008 太原)当 x 为任意实数时,二次三项式26xxc的值不小于 0,则常数 c 该满足的条件是:A0c B9c C0c D9c (2009 深圳)刘谦魔术风靡全国,小明学刘谦发明了一个魔术盒,对任意实数,a b进入其中,会得到一个新的实数:21ab

24、,例如把 3,2放入其中,会得到23(2)16 。现在将实数对(m,-2m)放入其中,得到实数 2,则m=_ 已知 x22kx16 是完全平方式,求常数 k的值_ x24xk是完全平方式,则 k_ 考点:平方差公式的几何背景 (2010 福州)如图所示,在边长为a的正方形中,减去一个边长为 b 的小正方形(ab),把剩下的部分拼成一个梯形,分别计算着两个图形阴影部分的面积,验证了公式:_ 10029929829729629522212_。幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整

25、式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 考点:数学在生产中的应用(2007 陕西)搭建如 1 图所示的单顶帐篷需要 17 根钢管,这样的帐篷按照 2图,3 图搭建,则串 7

26、 顶这样的帐篷需要_根钢管 作业:1、若 xy3,xy1,求xyyxxyxyyxxy4223322的值。2、已知 2a3,2b6,2c24,求 a、b、c 之间的关系。3、若 xm3,xn2,求 x2m3n的值;x3m2n的值。4、若 m4n50,求 2m16n的值。5、先化简,再求值:2(32)(32)5(1)(21)xxx xx ,其中13x 6、已知nmxxxx2275的乘积中不含 x3和 x2项,求 m、n 的值。幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配

27、律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢学习必备 欢迎下载 7、已知 ab3,ab45,求(1)(ab)2;(2)a2b2;(3)a3bab3的值 幂的除法零指数和负整数指数幂单项式乘以单项式整式及其运算乘法分配律整式的乘法单项式乘以多项式乘法分配律多项式乘以多项式平方差公式完全平方公式单项式除以单项式整式的除法乘法分配律多项式除以单项式二整式的考个数或一个字母也是代数式单项式只含有数字与字母的积的代数式叫做单项式注意单项式是由系数字母字母的指数构成的其中系数不能用带分数这种表示就是错误的应写成一个单项式中表示如所有字母的指数的和叫做这个单项式的积关系如是单项式而如果一个单项式只含有字母因数则它的系数就是或者此时通常省略不写是常数应作为单项式的系数单项式的系数包括它面的符号单项式的次数是所有字母的指数和数的指数和的指数不能与不是单项式学习必备欢

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁