《如何做二次函数中学教育中考中学教育中考.pdf》由会员分享,可在线阅读,更多相关《如何做二次函数中学教育中考中学教育中考.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料 欢迎下载 一、理解二次函数的内涵及本质.二次函数 y=ax2 bx c(a 0,a、b、c 是常数)中含有两个变量 x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.二、熟悉几个特殊型二次函数的图象及性质.1、通过描点,观察 y=ax2、y=ax2 k、y=a(x h)2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.2、理解图象的平移口诀“加上减下,加左减右”.y=ax2 y=a(x h)2 k“加上减下”是针对 k 而言的,“加左
2、减右”是针对 h 而言的.总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a、b、c、以及由系数组成的代数式的符号等问题.三、要充分利用抛物线“顶点”的作用 .1、要能准确灵活地求出“顶点”.形如 y
3、=a(x h)2 K 顶点(h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.2、理解顶点、对称轴、函数最值三者的关系.若顶点为(h,k),则对称轴为 x=h,y 最大(小)=k;反之,若对称轴为 x=m,y 最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.精品资料 欢迎下载 3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.四、理解掌握抛物线与坐标轴交点的求法.一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中
4、一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与 x 轴无交点.从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数.五、灵活应用待定系数法求二次函数的解析式.用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .二次函数y=ax2 学习要求:1知道二次函数的意义 2会用描点法画出函数 yax2 的图象,知道抛物线的有关概念 重
5、点难点解析 1.本节重点是二次函数的概念和二次函数 yax2 的图象与性质;难点是根据图象概括二次函数 yax2 的性质.2.形如ax2+bx+c(其中 a、b、c 是常数,a0)的函数都是二次函数.解析式中只能含有两 个变量 x、y,且 x 的二次项的系数不能为 0,自变量 x 的取值范围通常是全体实数,但在实际问题中应使实际量有意义。如圆面积 S 与圆半径 R 的关系式 SR2中,半径 R 只能取非负数。3.抛物线 yax2 的形状是由 a 决定的。a 的符号决定抛物线的开口方向,当 a0 时,开口向上,抛物线在 y 轴的上方(顶点在 x 轴上),并向上无限延伸;当可利用解析式求出另一个变
6、量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载
7、 a0 时,开口向下,抛物线在 x 轴下方(顶点在 x 轴上),并向下无限延伸。a越大,开口越小;a越小,开口越大.4.画抛物线 yax2 时,应先列表,再描点,最后连线。列表选取自变量 x 值时常以 0 为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。本节命题主要是考查二次函数的概念,二次函数 yax2 的图象与性质的应用。核心知识 规则 1 二次函数的概念:一般地,如果是常数,那么,y 叫做 x 的二次函数 规则 2 抛物线的有关概念:图 13-14 如图13-14,函数y=x2 的图象是一条关于 y 轴对称的曲线,这条曲线叫抛物线 实际上,二次函数的图
8、象都是抛物线抛物线 y=x2 是开口向上的,y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点 规则 3 抛物线 y=ax2 的性质:一般地,抛物线 y=ax2 的对称轴是 y 轴,顶点是原点,当 a0 时,抛物线 y=ax2的开口向上,当 a0 时,抛物线 y=ax2 的开口向下 规则 4 1.二次函数的概念 可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相
9、同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载(1)定义:一般地,如果 yax2+bx+c(a,b,c是常数,a0),那么,y 叫做 x 的的二次函数.(2)二次函数 yax2+bx+c 的结构特征是:等号左边是函数 y,右边是自变量 x 的二次式,x 的最高次数是 2.其中一次项系数 b 和常
10、数项 c 可以是任意实数,而二次项系数 a 必须是非零实数,即 a0.2.二次函数 yax2 的图像 图 13-1 用描点法画出二次函数 yx2 的图像,如图 13-1,它是一条关于 y 轴对称的曲线,这样的曲线叫做抛物线.因为抛物线 yx2 关于 y 轴对称,所以 y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线 yx2 的顶点是图象的最低点.因为抛物线 yx2 有最低点.所以函数 yx2 有最小值,它的最小值就是最低点的纵坐标.3.二次函数 yax2 的性质 函数 图像 开口方向 顶点坐标 对称轴 函数变化 最大(小)值 y=ax2 a0 向上 (0,0)Y
11、 轴 x0 时,y 随 x 增大而增大;可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要
12、充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 x0 时,y 随 x 增大而减小.当 x0 时,y 最小0.y=ax2 a0 向下 (0,0)Y 轴 x0 时,y 随 x 增大而减小;x0 时,y 随 x 增大而增大.当 x0 时,y 最大0.4.二次函数 yax2 的图像的画法 用描点法画二次函数 yax2 的图像时,应在顶点的左、右两侧对称地选取自变量 x 的值,然后计算出对应的 y 值,这样的对应值选取越密集,描出的图像越准确.二次函数 y=ax2+bx+c 学习要求:1会用描点法画出二次函数的图象 2能利用图象或通过配方确定抛物线的开口方向及对称轴、顶点、的位置 *3
13、会由已知图象上三个点的坐标求出二次函数的解析式 重点难点 1.本节重点是二次函数 yax2+bx+c 的图象和性质的理解及灵活运用,难点是二次函数 yax2+bx+c 的性质和通过配方把解析式化成 ya(x-h)2+k 的形式。2.学习本小节需要仔细观察归纳图象的特点以及不同图象之间的关系。把不同的图象联系起来,找出其共性。可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相
14、同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 一般地几个不同的二次函数,如果二次项系数 a 相同,那么抛物线的开口方向、开口大小(即形状)完全相同,只是位置不同.任意抛物线 ya(x-h)2+k 可以由抛物线 yax2 经过适当地平移得到,具体平移方法如下图所示:注意:上述平移的规律是:“h
15、值正、负,右、左移;k 值正、负,上、下移”实际上有关抛物线的平移问题,不能死记硬背平移规律,只要先将其解析式化为顶点式,然后根据它们的顶点的位置关系,确定平移方向和平移的距离非常简便.图 13-11 例如,要研究抛物线 L1yx2-2x+3 与抛物线 L2yx2 的位置关系,可将 yx2-2x+3 通过配方变成顶点式 y(x-1)2+2,求出其顶点 M1(1,2),因为 L2的顶点为 M2(0,0),根据它们的顶点的位置,容易看出:由 L2 向右平移 1 个单位,再向上平移 2 个单位,即得 L1;反之,由 L1 向左平移 1 个单位,再向下平移 2 个单位,即得 L2.二次函数 yax2+
16、bx+c 的图象与 yax2 的图象形状完全一样,它们的性质也有相似之处。当 a0 时,两条抛物线的开口都向上,并向上无限延伸,抛物线有最低点,y 有最小值,当 a0 时,开口都向下,并向下无限延伸,抛物线有最高点,y 有最大值.3.画抛物线时一定要先确定开口方向和对称轴、顶点位置,再利用函数对称性列表,这样描点连线后得到的才是完整的,比较准确的图象。否则画出的图象,往往只是其中一部分。例如画 y-(x+1)2-1 的图象。列表:x -3 -2 -1 0 1 2 3 可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型
17、二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 y -3 -1.5 -1 -1.5 -3 -5.5 -9 描点,连线成如图 13-11 所示不能反映其
18、全貌的图象。正解:由解析式可知,图象开口向下,对称轴是 x-1,顶点坐标是(-1,-1)列表:x -4 -3 -2 -1 0 1 2 y -5.5 -3 -1.5 -1 -1.5 -1.5 -5.5 描点连线:如图 13-12 可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再
19、平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 图 13-12 4.用配方法将二次函数 yax2+bx+c 化成 ya(x-h)2+k 的形式,首先要提出二次项系数 a。常犯的错误只提第一项,后面漏提。如 y-x2+6x-21 写成 y-(x2+6x-21)或 y-(x2-12x-42)把符号弄错,主要原因是没有掌握添括号的规则。本节命题主要考查二次函数 yax2+bx+c 的图象和性质及其
20、在实际生活中的运用。既有填空题、选择题,又有解答题,与方程、几何、一次函数的综合题常作为中考压轴题。核心知识 规则 1 抛物线 y=a(x-h)2+k 的性质:一般地,抛物线 y=a(x-h)2+k 与 y=ax2 形状相同,位置不同抛物线 y=a(x-h)2+k 有如下特点:(l)a 0 时,开口向上;a0 时,开口向下;(2)对称轴是直线 xh;(3)顶点坐标是(h,k)规则 2 二次函数 y=ax2+bx+c 的性质:y=ax2+bx+c(a,b,c 是常数,a0)是二次函数,图象是抛物线利用配方,可以把二次函数表示成 y=a(x-h)2+k 的形式,由此可以确定这条抛物线的对称轴是直线
21、,顶点坐标是,当 a0 时,开口向上;a0 时,开口向下 规则 3 1.二次函数解析式的几种形式 (1)一般式:yax2+bx+c(a,b,c为常数,a0).可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过
22、观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载(2)顶点式:ya(x-h)2+k(a,h,k为常数,a0).(3)两根式:ya(x-x1)(x-x2),其中 x1,x2 是抛物线与 x 轴的交点的横坐标,即一元二次方程 ax2+bx+c 0 的两个根,a0.说明:(1)任何一个二次函数通过配方都可以化为顶点式 ya(x-h)2+k,抛物线的顶点坐标是(h,k),h0 时,抛物线 yax2+k 的顶点在 y 轴上;当 k0 时,抛物线 a(x-h)2 的顶点在
23、x 轴上;当 h0 且 k0 时,抛物线 yax2 的顶点在原点.(2)当抛物线 yax2+bx+c 与 x 轴有交点时,即对应二次方程 ax2+bx+c 0 有实数根 x1 和 x2 存在时,根据二次三项式的分解公式 ax2+bx+c a(x-x1)(x-x2),二次函数 yax2+bx+c 可转化为两根式 ya(x-x1)(x-x2).2.二次函数解析式的确定 确定二次函数解析式,一般仍用待定系数法.由于二次函数解析式有三个待定系数 a、b、c(或 a、h、k 或 a、x1、x2),因而确定二次函数解析式需要已知三个独立的条件.当已知抛物线上任意三个点的坐标时,选用一般式比较方便;当已知抛
24、物线的顶点坐标时,选用顶点式比较方便;当已知抛物线与 x 轴两个点的坐标(或横坐标 x1,x2)时,选用两根式较为方便.注意:当选用顶点式或两根式求二次函数解析式时,最后一般都要化一般式.3.二次函数 yax2+bx+c 的图像 二次函数 yax2+bx+c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数的性质 根据二次函数 yax2+bx+c 的图像可归纳其性质如下表:函数 二次函数 yax2+bx+c(a,b,c是常数,a0)可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过
25、描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 图 像 a0 a0 (1)抛物线开口向上,并向上无限延伸.(2)对称轴是 x-,顶点坐标是(-,).(3)当 x-时,y 随
26、x 的增大而减小;当 x-时,y 随 x 的增大而增大.(4)抛物线有最低点,当 x-时,y 有最小值,y 最小值.(1)抛物线开口向下,并向下无限延伸.(2)对称轴是 x-,顶点坐标是(-,).(3)当 x-时,y 随 x 的增大而增大;当 x-时,y 随 x 的增大而减小.(4)抛物线有最高点,当 x-时,y 有最大值,y 最大值.5.求抛物线的顶点、对称轴、最值的方法 配方法:将解析式化为 ya(x-h)2+k 的形式,顶点坐标(h,k),对称轴为直线 xh,若 a0,y 有最小值,当 xh 时,y 最小值k,若 a0,y 有最大值,当 xh 时,y 最大值k.公式法:直接利用顶点坐标公
27、式(-,),求其顶点;对称轴是直线 x-,若 a0,y 有最小值,当 x-时,y 最小值,若 a0,y 有最大值,当 x-时,y最大值.6.二次函数 yax2+bx+c 的图像的画法 可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征
28、在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等);(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.7.二次函数 yax2+bx+c 的图像的位置与 a、b、c 及 符号有密切的关系(见下表):项 目 字 母 字母的符号 图像的位置 a a0 a0 开口
29、向上 开口向下 b b=0 ab 0 ab 0 对称轴为 y 轴 对称轴在 y 轴左侧 对称轴在 y 轴右侧 c c=0 c 0 c0 经过原点 与 y 轴正半轴相交 与 y 轴负半轴相交 可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基
30、本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点精品资料 欢迎下载 8.二次函数与一元二次方程的关系 二次函数 yax2+bx+c 的图像(抛物线)与 x 轴的两个交点的横坐标 x1、x2,是对应的一元二次方程 ax2+bx+c 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:0 抛物线与 x 轴有 2 个交点;0 抛物线与 x 轴有 1 个交点;0 物线与 x 轴有 0 个交点(没有交点).可利用解析式求出另一个变量即得到一组解而一组解就是一个点的坐标实际上二次函数的图象就是由无数个这样的点构成的图形二熟悉几个特殊型二次函数的图象及性质通过描点观察图象的形状及位置熟悉各自图象的基本特征反之左减右是针对而言的总之如果两个二次函数的二次项系数相同它们的抛物线形状相同由于顶点坐标不同所以位置不同而抛物线的平移实质上是顶点的平移如果抛物线是一般形式应先化为顶点式再平移通过描点画图图象平移理解并明象的基本特征在熟悉函数图象的基础上通过观察分析抛物线的特征来理解二次函数的增减性极值等性质利用图象来判别二次函数的系数以及由系数组成的代数式的符号等问题三要充分利用抛物线顶点的作用要能准确灵活地求出顶点