《圆的一般方程教案小学教育小学学案中学教育中学学案.pdf》由会员分享,可在线阅读,更多相关《圆的一般方程教案小学教育小学学案中学教育中学学案.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、4.2.1 圆的一般方程 课题 圆的一般方程 课型 新 授课课时 1 课时 授课时长 45 分钟 授课题目(章,节)第四章第一节 4.2.1 圆的一般方程 教材及参考书目 人教 A版高中数学实验教科书必修 2 教学目的与要求 一、知识目标:(1)理解记忆圆的一般方程的代数特征。(2)掌握方程220 xyDxEyF 表示圆的条件。二、能力目标:(1)能应用配方法将圆的一般方程化为圆的标准方程。(2)能应用待定系数法求圆的一般方程。(3)能应用代入法求一般曲线的方程。(4)培养探索发现及分析解决问题的能力。三、情感目标:(1)培养学生勇于探索的精神。(2)渗透数形结合、化归与转化等数学思想方法,提
2、高学生的整体素质。教学重点 圆的一般方程的代数特征、一般方程与标准方程的互化、待定系数法求圆的一般方程 的步骤 教学难点 圆的一般方程和代入法的掌握、应用 教学方法 师生合作式探究 诱导启发式教学 教学辅助 多媒体教学平台 CAI课件 教学过程与时间分配 一、复习提问,引入课题 (3 分钟)二、探索研究,讲授新课 (22 分钟)三、例题讲解,对应练习 (16 分钟)四、课堂小结,反馈回授 (3 分钟)五、分层作业,巩固提高 (1 分钟)教学基本内容 设计意图 一、复习提问,引入课题 问题:求过三点(0,0),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运
3、用圆的知识很难解决问题。因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。【辅助手段】:多媒体课件幻灯片展示问题。二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()xaybr、圆心(a,b)、半径 r 把圆的标准方程展开,并整理:22222220 xyaxby abr 取 D=-2a E=-2b F=222abr 220 xyDxEyF 这个方程就是圆的方程.反过来给出一个形如220 xyDxEyF 的方程,它表示的曲线一定是圆吗?把220 xyDxEyF 配方得:222224()()224DE
4、DEFxy 【师生互动】配方和展开由学生完成,教师最后展示结果。问题:这个方程是不是表示圆?当2224DEF0 时,方程表示以(-2D,2E)为圆心,以 22142DEF为半径的圆.以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容.质疑提问,小组讨论,提高了学生学习的兴趣.学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.通过对一个方程的讨论,得出圆的一般方程,并指出不是 所有的方程都可以 表示圆。使得学生的认
5、识不断加深,同时 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设教学基本内
6、容 设计意图 当2224DEF=0 时,方程只有实数解2Dx,2Ey 即只表示一个点(2D,2E).当2224DEF0 时,方程没有实数解,因此它不表示任何图形.【师生互动】学生在教师的引导下对方程分类讨论,最后师生共同总结出3 种情况,即圆的一般方程表示圆的条件。【归纳总结】圆的一般方程的特点:2x和2y的系数相同,都等于 1。没有xy这样的二次项。圆的一般方程中有三个特定的系数 D、E、F,因此只要求出这三个系数,就能确定圆的一般方程。圆的一般方程是一种特殊的二元一次方程,代数特征明显,圆的标准方程则是几何特征明显。【师生互动】学生小组讨论交流,老师进行课堂巡视指导,引导学生归纳。最后师生
7、共同总结出圆的一般方程的特点。【辅助手段】板书配方和展开过程,多媒体课件幻灯片展示 三、例题讲解,对应练习 例 1 判断下列二元一次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。224441290 xyxy 2244412110 xyxy 分析:方法 1 利用配方法将其化为圆的标准形式.方法 2 应用圆的一般方程来解,这里 D=-1,E=3,F=94.例 2 求过三点 A(0,0),B(1,1),C(4,2)的圆的方程,并求这个 圆的半径长和圆心坐标。培养思维的严谨性.归纳知识,有利于学生理清知识脉络.强调的概念的本质,让学生理解记忆圆的一般方程的代数特征.深化学生对圆的一般方程的理解.
8、同步练习,检测学生的掌握情况,及时回授,强化知识点的应用.加深对所学知识的理解应用,使学生掌握基础知识,有利于学生更高思维能力的培养.及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤
9、整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设分析:根据已知条件,很难直接写出圆的标准方程,而圆的 教学基本内容 设计意图 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科
10、必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。【教师讲解】设圆的方程为220 xyDxEyF A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:02042200FDEFDEF 即 D=-8 E=6 F=O 所求的方程为22860 xyxy 222142rDEF=5、2D=4、2E=-3 圆心坐标为(4,-3)或将220 xyDxEyF 化为圆的标准方程:22(4)(3)2
11、5xy【归纳总结】应用待定系数法的一般步骤 根据条件,选择是标准方程还是一般方程。根据条件列出关于 a、b、r 或 D、E、F的方程组。解出 a、b、r 或 D、E、F并将其代入其相关方程。例 3 已知线段 AB的端点 B的坐标是(4,3),端点 A在圆上 22(1)4xy运动,求线段 AB的中点 M的轨迹方程。分析:如图点 A运动引起 M运动,而点 A在圆上运动点 A 的坐标满足方程22(1)4xy,建立点 M与点 A的关系,就可以建立点 M的坐标满足的条件,也就出了M的方程。进一步熟悉圆的一般方程.通过本题的练习,使学生掌握待定系数法求解圆的一般方程的步骤.总结题目方法,提炼出解决一般问题
12、的方法,形成类型题的方法.强调方法的本质,加深学生对方法的理解应用.教学基本内容 设计意图 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节
13、式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设【教师讲解】:设点 M 的坐标是(x,y),点 A 的坐标是(0 x,0y),由于点B的坐标是(4,3),且 M是线段AB的中点,所以有:042xx,042yy 于是有 024xx ,023yy 因为点A在圆22(1)4xy上运动,所以点 A的坐标满足方程22(1)4xy 即 2200(1)4xy 把代入,得:22(241)(23)4xy 整理,得:2233()()122xy 所以,点 M的轨迹是以(32,32)为圆心,半径是 1 的圆.【归纳总结】运用代入法求轨迹方程的步骤 建立适当的坐标系,用有序数对(x,y)表示曲线上任意一
14、点 M的坐标.写出适合条件的点M的集合.列出方程(,)0f x y.化方程(,)0f x y 为最简形式.【课堂练习】1 求下列各方程表示的圆的圆心坐标和半径长 2260 xyx 2220 xyby 22222 330 xyaxaya 2 判断下列方程分别表示什么图形 220 xy 222460 xyxy 22220 xyaxb 进一步熟悉圆的一般方程.掌握运用代入法求解曲线的轨迹方程的步骤.培养学生运用知识的能力.总结归纳,把方法系统化,形成能力.让学生熟悉巩固知识,运用方法,另外还可让学生上台演习各自解题过程.这样既可及时反馈 学生知识的掌握情况,又可以纠正学生 在解题过程中出现 的各种问
15、题,如方法错误、书写不规范等 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三
16、设教学基本内容 设计意图 3 如图,等腰梯形 ABCD 的底边长分别为 6 和 4,高为 3,求这个等腰梯形的外接圆的方程,并求出圆心坐标和半径.提示:待定系数法的应用.【师生互动】第一二题练习课让学生通过抢答的形式进行.第三题练习是待定系数法方法的运用,教师可叫几个同学上黑板进行板演,教师适当点评,最后教师讲解解题过程.【辅助手段】多媒体课件幻灯片展示,学生自练或板演,教师讲评解题过程.四、课堂小结,反馈回授 1、对方程220 xyDxEyF 的讨论和圆的一般方程的代数特征理解.2、圆的一般方程和标准方程的互化.3、待定系数法求解圆的一般方程.4、代入法求解曲线的轨迹方程.五、分层作业,巩固
17、提高 必做题:教材 134 页 3、4 选做题:1已知点 M与两个定点 O(0,0)、A(3,0)的距离的比为12,求点 M的轨迹方程。【辅助手段】多媒体课件幻灯片展示作业 问题.进一步巩固代入法等数学方法,提高学生的思维能力和运用知识解答问题的能力.有利于学生理清本节课的重难点,深化对圆的一般方程的理解,帮助学生从感性认识上升为理性认识.有利于学生把知识转化为能力,形成数学方法和数学思维.启发引导学生进行归纳整理,培养学生宏观掌握知识的能力.必做题与选做题 相结合,面向全体学 生,激发学生兴趣.及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆
18、理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设教学基本内容 设计意图 六、板书设计 课题 标准方程的展开 一般方程的配方 一般方程什么时候表示圆的讨论 例 1 例 2 例
19、3 课堂小结 课后作业 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设 及参考书目人教版高中教版数学实验科必必修的与科必修要求一科必必修教版知识标理实验解记理标理实验忆圆理标理的与般与理教版方程代特征代特征教版掌握表示必条件二一能教版力掌教版目应用件版配科必法将化必为准待科定系知归转等定系思想应用提生整体科必必修教版素质重点互步骤难和互步入师必为合作式探究诱导教启发小结整体必为反馈将化应用教版骤回授五难科必力分层业必修用条巩层业固钟基本内探容复五难目法习问用科必固钟引科必版五难课题科必容过件版必三设计表意教图巩顾形出新思想应用动在骤整体教启必为指教骤下展开组转等讨素质论旧节式合作教版最?发?必为?力?教版?计教版意程?件?基?定?必三设