课时_6.3.2二项式系数的性质-6.3.2二项式系数的性质.docx

上传人:ge****by 文档编号:95885850 上传时间:2023-09-03 格式:DOCX 页数:4 大小:602.62KB
返回 下载 相关 举报
课时_6.3.2二项式系数的性质-6.3.2二项式系数的性质.docx_第1页
第1页 / 共4页
课时_6.3.2二项式系数的性质-6.3.2二项式系数的性质.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《课时_6.3.2二项式系数的性质-6.3.2二项式系数的性质.docx》由会员分享,可在线阅读,更多相关《课时_6.3.2二项式系数的性质-6.3.2二项式系数的性质.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 6.3.2二项式系数的性质一、 内容与内容解析1. 内容:二项式系数性质的研究,包括对称性,增减性与最大值,以及利用赋值法求二项式系数的和.2. 内容解析:(1) 对称性:与首末两端“等距离”的两个二项式系数相等,这一性质可以借助组合数运算帮助理解,即,复习巩固组合数运算的过程,也加深了二项式定理与组合知识之间的联系,明确了组合运算通常是具有现实意义的,体现了数学的实际价值.也可以从函数这个角度进行研究,直线将函数的图象分成对称的两部分,类比于数列作为特殊的函数的研究方式,重温函数研究性质的过程,体会化归思想.(2) 增减性与最大值:从组合运算的角度来看,由于,所以当,即时,随的增加而增大;

2、再结合对称性可以知道当时,随的增加而减小.除此之外还可以结合这个函数来研究增减变化特征以及何时可以取得最值,数形结合,并且让学生体会用函数来研究二项式系数性质的好处,积累研究的经验,并在此处还需学生注意观察,分类讨论,最大值的情况需把分奇偶,再进行判断.(3) 利用赋值法求二项式系数的和:这是解决组合数运算的过程中很重要的一种方法,在的展开式中,既可以取任意实数,也可以取任意多项式,还可以是别的,我们可以根据具体问题的需要灵活选择。3. 教学重点:二项式系数的性质(对称性、增减性与最大值和各二项式系数的和)二、 目标与目标解析1. 目标:(1) 借助二项式系数表和函数来探寻二项式系数的性质,并

3、能灵活运用性质解决相关问题.(2)会用赋值法求二项展开式系数的和,注意区分项的系数和二项式系数.2. 目标解析:达成上述目标的标志是:(1) 分析得到二项式系数的性质:1.对称性;2.增减性与最大值;(2) 能够运用组合的意义和函数性质来解释二项式系数的对称性和增减性及最大值;(3) 利用赋值法求二项展开式各类系数的和.三、 教学问题诊断解析1. 问题诊断(1) 通过二项式系数的表格,让学生从特殊到一般,归纳总结得到二项式系数的对称性,并能够用组合的知识来解释对称性.(2) 从函数入手,当时,让学生观察函数图象的变化情况,因为这里不同于以外常见的二次函数,是不连续的点构成的函数图象,可以类比数

4、列,分析对称性和单调性,并对以奇偶数进行分类讨论,何时才能取得最大值,是否有不同.(3) 体会赋值法求和的好处,对二项展开式中各类系数可以借助赋值实现巧妙的求和.2. 教学难点从组合数和函数两个角度分析探索二项式系数的性质.四、 教学支持条件分析让学生学会探索二项式系数的方法是本节课的重点,所以需要借助ppt、ggb、几何画板等软件,展示二项式系数表和函数图象,便于学生能更直观的感受,分析,提炼出二项式系数的性质.五、教学过程设计1.复习回顾,新课导入复习二项式定理:,.其中的展开式的二项式系数有很多有趣的性质.2.合作探究,观察分析探究二项式系数的关系,学生分享问题1 填写表格观察二项式系数

5、的变化,是否能发现什么规律?生:通过填写观察的展开式的二项式系数表格可以发现,每一行的系数具有对称性.问题2 对于的展开式的二项式系数,我们还可以从函数的角度分析它们,可以看成是以为自变量的函数,其定义域是.对于确定的,我们还可以画出它的图象.能否画出时,函数的图象?追问1:观察函数图象,当时,你发现二项式系数什么规律?追问2:能否画出时函数的图象,比较它们的异同,你又发现了什么规律?3.性质归纳,学生分享学生分析性质,说明理由.1.对称性:与首末两端“等距离”的两个二项式系数相等. 事实上,这一性质可直接由得到.追问1:你能用组合的意义来解释一下这个“组合等式”吗?追问2:是否能从函数的角度

6、来说明二项式系数具有对称性呢?直线将函数的图象分成对称的两部分,它是图象的对称轴.2.增减性与最大值:因为,即,所以,当时,即时,随的增加而增大;由对称性知,当时,随的增加而减小. 当是偶数时,中间的一项取得最大值;当是奇数时,中间的两项和相等,且同时取得最大值.3.各项式系数的和:已知,令,得.这就是说,的展开式的各二项式系数的和等于.4.例题分析,学以致用例1 求证:在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.教师分析:奇数项的二项式系数的和为,偶数项的二项式系数的和为. 由于中的可以取任意实数,因此我们可以通过对适当赋值来得到上述两个系数和.证明:在展开式中,令,则得.即.因此,即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.课堂训练11. 填空题(1) ;(2) .课堂训练2 2.在展开式中求(1) 二项式系数的最大值;(2) 二项式系数的和;(3) 各项系数的和;(4)奇数项的系数和.(1) 二项式系数最大值为,(2) 二项式系数的和为,(3) ,所以各项系数的和需借助赋值法,令,则各项系数和为.(4) ,令,得式令,得式.所以奇数项的系数和为.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁