《2018年江苏镇江中考数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2018年江苏镇江中考数学真题及答案.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2018年江苏镇江中考数学真题及答案一、填空题(本大题共有12小题,每小题2分,共计24分)1(2分)8的绝对值是8答案为82(2分)一组数据2,3,3,1,5的众数是3答案为33(2分)计算:(a2)3=a6答案为:a64(2分)分解因式:x21=(x+1)(x1)答案为:(x+1)(x1)5(2分)若分式有意义,则实数x的取值范围是x3答案为:x36(2分)计算:=2答案为:27(2分)圆锥底面圆的半径为1,侧面积等于3,则它的母线长为3答案为38(2分)反比例函数y=(k0)的图象经过点A(2,4),则在每一个象限内,y随x的增大而增大(填“增大”或“减小”)答案为:增大9(2分)如图,
2、AD为ABC的外接圆O的直径,若BAD=50,则ACB=40答案为4010(2分)已知二次函数y=x24x+k的图象的顶点在x轴下方,则实数k的取值范围是k4答案为:k411(2分)如图,ABC中,BAC90,BC=5,将ABC绕点C按顺时针方向旋转90,点B对应点B落在BA的延长线上若sinBAC=,则AC=答案为12(2分)如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD已知EFG的面积等于6,则菱形ABCD的面积等于27答案为27二、选择题(本大题共有5小题,每小题3分,共计15分在每小题所给出的四个选项中,只有一项符合题目要求)13(3分)
3、0.000182用科学记数法表示应为()A0182103B1.82104C1.82105D18.2104选:B14(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是()ABCD选:D15(3分)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A36B30C24D18选:C16(3分)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,
4、匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A10:35B10:40C10:45D10:50选:B17(3分)如图,一次函数y=2x与反比例函数y=(k0)的图象交于A,B两点,点P在以C(2,0)为圆心,1为半径的C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()ABCD选:C三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤)18(8分)(1)计算:21+(2018)0sin30(2)化简:(a+1)2a(a+1)1【解答】解
5、:(1)原式=+1=1;(2)原式=a2+2a+1a2a1=a19(10分)(1)解方程:=+1(2)解不等式组:【解答】解:(1)两边都乘以(x1)(x+2),得:x(x1)=2(x+2)+(x1)(x+2),解得:x=,当x=时,(x1)(x+2)0,分式方程的解为x=;(2)解不等式2x40,得:x2,解不等式x+14(x2),得:x3,则不等式组的解集为x320(6分)如图,数轴上的点A,B,C,D表示的数分别为3,1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率【解答】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所以所
6、取两点之间的距离为2的概率=21(6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【解答】解:设这本名著共有x页,根据题意得:36+(x36)=x,解得:x=216答:这本名著共有216页22(6分)如图,ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC(1)求证:ABEACF;(2)若BAE=30,则ADC=75【解答】(1)证明:AB=AC,B=ACF,在ABE和ACF中,ABEACF(SAS);(2)ABEACF,BAE=30,BAE=CAF=30,AD=AC,ADC=ACD,ADC=75,故答
7、案为:7523(6分)某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;
8、(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:身高频数频率147.5151.530.06151.5155.5100.20155.5159.511m159.5163.590.18163.5167.580.16167.5171.540.08171.5175.5n0.06175.5179.520.04合计501m=0.22,n=3;这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?【解答】解:(1)=(161+155+174+163+152)=161;(2)如表可知,m=0,22,n=3,故答案为:0.22;3;这50名学生身高的中位数落在159.5163.5,
9、身高在151.5155.5的学生数最多24(6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长(精确到0.1米)参考值:1.41,1.73【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=x
10、m,则CN=xm,在RtAFM中,MF=,在RtCNH中,HN=,HF=MF+HNMN=x+x24,即8=x+x24,解得,x11.7,AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m25(6分)如图,一次函数y=kx+b(k0)的图象与x轴,y轴分别交于A(9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分(1)求一次函数y=kx+b(k0)的表达式;(2)若ACE的面积为11,求点E的坐标;(3)当CBE=ABO时,点E的坐标为(11,3)【解答】解:(1)一次函数y=kx+b(k0)的图象与x轴,y轴分别交于A(9,0)
11、,B(0,6)两点,一次函数y=kx+b的表达式为y=x6;(2)如图,记直线l与y轴的交点为D,BCl,BCD=90=BOC,OBC+OCB=OCD+OCB,OBC=OCD,BOC=COD,OBCOCD,B(0,6),C(2,0),OB=6,OC=2,OD=,D(0,),C(2,0),直线l的解析式为y=x,设E(t,tt),A(9,0),C(2,0),SACE=ACyE=11(t)=11,t=8,E(8,2);(3)如图,过点E作EFx轴于F,ABO=CBE,AOB=BCE=90ABOEBC,BCE=90=BOC,BCO+CBO=BCO+ECF,CBO=ECF,BOC=EFC=90,BOC
12、CFE,CF=9,EF=3,OF=11,E(11,3)故答案为(11,3)26(8分)如图1,平行四边形ABCD中,ABAC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的P与对角线AC交于A,E两点(1)如图2,当P与边CD相切于点F时,求AP的长;(2)不难发现,当P与边CD相切时,P与平行四边形ABCD的边有三个公共点,随着AP的变化,P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围AP或AP=5【解答】解:(1)如图2所示,连接PF,在RtABC中,由勾股定理得:AC=8,设AP=x,则DP=10x,PF=x,
13、P与边CD相切于点F,PFCD,四边形ABCD是平行四边形,ABCD,ABAC,ACCD,ACPF,DPFDAC,x=,AP=;(2)当P与BC相切时,设切点为G,如图3,SABCD=10PG,PG=,当P与边AD、CD分别有两个公共点时,AP,即此时P与平行四边形ABCD的边的公共点的个数为4,P过点A、C、D三点,如图4,P与平行四边形ABCD的边的公共点的个数为4,此时AP=5,综上所述,AP的值的取值范围是:AP或AP=5故答案为:AP或AP=527(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C处,若ADB=46,则DBE的度数为23(2)小
14、明手中有一张矩形纸片ABCD,AB=4,AD=9【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A,B处,若AG=,求BD的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A,B处,小明认为BI所在直线恰好经过点D,他的判断是否正确,请说明理
15、由【解答】解:(1)如图1中,四边形ABCD是矩形,ADBC,ADB=DBC=46,由翻折不变性可知,DBE=EBC=DBC=23,故答案为23(2)【画一画】,如图2中,【算一算】如图3中,AG=,AD=9,GD=9=,四边形ABCD是矩形,ADBC,DGF=BFG,由翻折不变性可知,BFG=DFG,DFG=DGF,DF=DG=,CD=AB=4,C=90,在RtCDF中,CF=,BF=BCCF=,由翻折不变性可知,FB=FB=,DB=DFFB=3【验一验】如图4中,小明的判断不正确理由:连接ID,在RtCDK中,DK=3,CD=4,CK=5,ADBC,DKC=ICK,由折叠可知,ABI=B=
16、90,IBC=90=D,CDKIBC,=,即=,设CB=3k,IB=4k,IC=5k,由折叠可知,IB=IB=4k,BC=BI+IC=4k+5k=9,k=1,IC=5,IB=4,BC=3,在RtICB中,tanBIC=,连接ID,在RtICD中,tanDIC=,tanBICtanDIC,BI所在的直线不经过点D28(10分)如图,二次函数y=x23x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将OAB按相似比2:1放大,得到OAB,二次函数y=ax2+bx+c(a0)的图象经过O,A,B三点(1)画出OAB,试求二次函数y=ax2+bx+c(a0)的表
17、达式;(2)点P(m,n)在二次函数y=x23x的图象上,m0,直线OP与二次函数y=ax2+bx+c(a0)的图象交于点Q(异于点O)连接AP,若2APOQ,求m的取值范围;当点Q在第一象限内,过点Q作QQ平行于x轴,与二次函数y=ax2+bx+c(a0)的图象交于另一点Q,与二次函数y=x23x的图象交于点M,N(M在N的左侧),直线OQ与二次函数y=x23x的图象交于点PQPMQBN,则线段NQ的长度等于6【解答】解:(1)由以点O为位似中心,在y轴的右侧将OAB按相似比2:1放大,得=A(4,4),B(3,0)A(8,8),B(6,0)将O(0,0),A(8,8),B(6,0)代入y=
18、ax2+bx+c得解得二次函数的解析式为y=x23x;(2)P(m,n)在二次函数y=x23x的图象上n=m23mP(m,m23m)设直线OP的解析式为y=kx,将点P(m,m23m)代入函数解析式,得mk=m23mk=m3OP的解析是为y=(m3)xOP与yx23x交于Q点解得(不符合题意舍去)Q(2m,2m26m)过点P作PCx轴于点C,过点Q作QDx轴于点D则OC=|m|,PC=|m23m|,OD=|2m|,QD=|226m|=2OCPODQOQ=2OP2APOQ2AP2OP,即APOP化简,得m22m40,解得1m1+,且m0;P(m,m23m),Q(2m,2m26m)点Q在第一象限,
19、解得3由Q(2m,2m26m),得QQ的表达式是y=2m26mQQ交y=x23x交于点Q解得(不符合题意,舍)Q(62m,2m26m)设OQ的解析是为y=kx,(62m)k=2m26m解得k=m,OQ的解析式为y=mOQ与y=x23x交于点Pmx=x23x解得x1=0(舍),x2=3mP(3m,m23m)QQ与y=x23x交于点Pmx=x23x解得x1=0(舍去),x2=3mP(3m,m23m)QQ与y=x23x交于点M、Nx23x=2m26m解得x1=,x2=M在N左侧M(,2m26m)N(,2m26m)QPMQBN即化简得m212m+27=0解得:m1=3(舍),m2=9N(12,108),Q(8,108)QN=6故答案为:6