《八年级数学上册一次函数之分段函数导学案修复的中学教育中考_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《八年级数学上册一次函数之分段函数导学案修复的中学教育中考_中学教育-中学课件.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学上册导学案(二十六)杨成超 一次函数(四)分段函数【教学目标】:1.分段函数的特点,会根据题意求出分段函数的解析式并画出函数图象 2.及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数 3.用一次函数及其图象解决简单的实际问题,发展学生的数学应用能力 4.并感知数学建模的一般思想【教学重难点】:分段函数的初步认识与简单多变量问题的解决:对数学建模的过程、思想、方法的领会,提升分析问题的能力。【自学指导】:学生看 P118-P119思考以下问题:1)注意 P118例 5中的分析部分,知晓如何确定自变量的取值范围。2)注意 P119中的“书签
2、”,两个函数解析式是如何得到的,对自变量又有什么要求,依据是什么?【自学检测】:1.如图 6-5-2中的折线 ABC,为甲地向乙地打长途电话需付的电话费 y(元)与通话时间 t(分钟)之间的函数关系的图象.当 t 3 时,该图象的解析式为 ;从图象中可知,通话 3 分钟需要付电话费 元;通话 7 分钟需付电话费 元.【教学指导】:分段函数图像的独特性。一次分段函数的书写形式。分段函数应注意那些(自变量的取自范围和因变量的取值范围)。【师生共同探究,总结】:定义:一般地,如果有实数a1,a2,a3k1,k,2k3b1,b2,b3且a1a2a3函数Y 与自变量X 之间存在 k1x+b1 xa1 y
3、=k2x+b2 a1xa2 的函数解析式,则称该函数解析式为X的分段函数。K3x+b3 a2xa3 应该指出:(一),函数解析式这个整体只是一个函数,并非是 Y=K1X+b1 Y=K2X+b2等几个不同函数的简单组合,而 k1x+b1,k2x+b2 是函数 Y 的几种不同的表达式.,例如Y=这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和11080%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。一次函数与一次函数构成的两段分段函数 常数函数
4、与一次函数构成的两段分段函数 三段型分段函数 四段型分段函数 五段型分段函数。【作业与教学反思】:1(江苏省宿迁市 20XX 年初中毕业暨升学考试)我市某出租车公司收费标准如图所示,如果小明只有 19 元钱,那么他乘此出租车最远能到达 公里处 038x(公里)512y(元)2(资阳市 20XX年中考题)甲骑自行车、乙骑摩托车沿相同路线由 A地到 B 地,行驶过程中路程与时间的函数关系的图象如图 7.根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你
5、根据下列情形,分别列出关于行驶时间 x 的方程或不等式(不化图 7 析式并画出函数图象及多变量的问题的解决中能合理选择某个变量作为自变量然后根据问题条件寻求可以反映实际问题的函数用一次函数及其图象解决简单的实际问题发展学生的数学应用能力并感知数学建模的一般思想教学重难点生看思考以下问题注意例中的分析部分知晓如何确定自变量的取值范围注意中的书两个函数解析式是如何得到的对自变量又有什么要求依据是什么自学检测如图中的折线为甲地向乙地打长途电话需付的电话费元与通话时间分钟之间分段函数图像的独特性一次分段函数的书写形式分段函数应注意那些自变量的取自范围和因变量的取值范围师生共同探究总结定义一般地如果有实
6、数且函数与自变量之间存在的函数解析式则称该函数解析式为的分段函数应该指出一简,也不求解):甲在乙的前面;甲与乙相遇;甲在乙后面.3(连云港市 20XX 年)据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示 过线段OC上一点)0,(tT作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为th 内沙尘暴所经过的路程s(km)(1)当4t时,求s的值;(2)将 s 随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地 650km,试判断这场沙尘暴是否会侵袭到N城 如果会,在沙尘暴发生后多长时间它将侵袭到N城
7、?如果不会,请说明理由 4(南京市 20XX 年中考数学试题)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量 y(升)与时间 x(分钟)之间的关系如折线图所示;根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟 19 升,求排水时 y 与 x 之间的关系式。如果排水时间为 2 分钟,求排水结束时洗衣机中剩下的水量。考虑到函数教学较难进行之处在于学生第一次接触函数相关内容,其抽象性不易理解与掌握,所以采取的教学策略是从学生感兴趣的上因特网入手,从网络计费问题引出探讨对象,容
8、易引起学生兴趣,从而进入探索过程。课堂组织形式采用引导探究模式,充分调动学生积极性,以课堂讨论为主。y/升x/分04015435302010 t(h)O v(km/h)C A B(第 3 题图)析式并画出函数图象及多变量的问题的解决中能合理选择某个变量作为自变量然后根据问题条件寻求可以反映实际问题的函数用一次函数及其图象解决简单的实际问题发展学生的数学应用能力并感知数学建模的一般思想教学重难点生看思考以下问题注意例中的分析部分知晓如何确定自变量的取值范围注意中的书两个函数解析式是如何得到的对自变量又有什么要求依据是什么自学检测如图中的折线为甲地向乙地打长途电话需付的电话费元与通话时间分钟之间分段函数图像的独特性一次分段函数的书写形式分段函数应注意那些自变量的取自范围和因变量的取值范围师生共同探究总结定义一般地如果有实数且函数与自变量之间存在的函数解析式则称该函数解析式为的分段函数应该指出一