《天津市红桥区复兴中学2022-2023学年数学九年级第一学期期末学业质量监测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《天津市红桥区复兴中学2022-2023学年数学九年级第一学期期末学业质量监测模拟试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为( )A12B7C6D42一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是( )ABCD3正六边形的周长为6,则它的面积为( )ABCD4在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为()
3、粒ABCD5如图,反比例函数y的图象与一次函数ykx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程kx+b的解为( )A-2,1B1,1C-2,-2D无法确定6下列y和x之间的函数表达式中,是二次函数的是()ABCDyx-37将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4()A先向左平移3个单位,再向上平移4个单位B先向左平移3个单位,再向下平移4个单位C先向右平移3个单位,再向上平移4个单位D先向右平移3个单位,再向下平移4个单位8用配方法解方程x2-4x+30时,原方程应变形为( )A(x+1)21B(x-1)2
4、1C(x+2)21D(x-2)219如图,平行于x轴的直线AC分别交函数 y=x(x0)与 y= x(x0)的图象于 B,C两点,过点C作y轴的平行线交y=x(x0)的图象于点D,直线DEAC交 y=x(x0)的图象于点E,则=( )AB1CD3 10下列是一元二次方程的是( )ABCD二、填空题(每小题3分,共24分)11如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为_cm12如图,内接于, 则的半径为_13如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:
5、s)之间具有函数关系y5x2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_14关于的一元二次方程有实数根,则满足_.15使代数式有意义的实数x的取值范围为_16如图,点G是ABC的重心,过点G作GE/BC,交AC于点E,连结GC. 若ABC的面积为1,则GEC的面积为_.17如图,O的半径为4,点B是圆上一动点,点A为O内一定点,OA4,将AB绕A点顺时针方向旋转120到AC,以AB、BC为邻边作ABCD,对角线AC、BD交于E,则OE的最大值为_18PA是O的切线,切点为A,PA2,APO30,则阴影部分的面积为_三、解答题(共66分)19(10分)在平面直角坐标系xoy中
6、,点A (-4,-2),将点A向右平移6个单位长度,得到点B.(1)若抛物线y-x2bxc经过点A,B,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;(3)若抛物线y-x2bxc的顶点在直线yx2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范围20(6分)如图所示,四边形ABCD中,ADBC,A90,BCD90,AB7,AD2,BC3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形2
7、1(6分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx时,x的取值范围;(3)计算线段AB的长22(8分)如图,是的直径,点在上,垂直于过点的切线,垂足为(1)若,求的度数;(2)如果,则 23(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24(8分) “早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植
8、“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?25(10分)解方程:(1)x(2x1)+2x10(2)3x26x2026(10分)如图,在中,点在边上,经过点和点且与边相交于点(1)求证:是的切线;(2)若,求的半径参考答案一、选择题(每小题3分,共30分)1
9、、C【分析】延长AC交x轴于E,延长BD交x轴于F设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b)则AE=OE=a,BF=OF=b根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解【详解】延长AC交x轴于E,延长BD交x轴于F设A、B的横坐标分别是a,b点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b)则AE=OE=a,BF=OF=bC、D两点在交双曲线(x0)上,则CE,DF,BD=BFDF=b,AC=a又BD=2AC,b2(a),两边平方得:b22=4(a22),即b24(
10、a2)1在直角OCE中,OC2=OE2+CE2=a2,同理OD2=b2,4OC2OD2=4(a2)(b2)=1故选:C【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键2、A【详解】解:列表如下:-214-2-(1,-2)(4,-2)1(-2,1)-(4,1)4(-2,4)(1,4)-所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q0的情况有4种,则P(满足方程的根)=故选:A3、B【分析】首先根据题意画出图形,即可得OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得OBC的面积,
11、则可求得该六边形的面积【详解】解:如图,连接OB,OC,过O作OMBC于M,BOC=360=60,OB=OC,OBC是等边三角形,正六边形ABCDEF的周长为6, BC=66=1,OB=BC=1,BM=BC=,OM= ,SOBC=BCOM= ,该六边形的面积为: 故选:B【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用4、B【解析】设瓶子中有豆子x粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可【详解】设瓶子中有豆子粒豆子,根据题意得:,解得:,经检验:是原分式方程的解,答:估计瓶子中豆子的数量约为粒故选:【点睛】本题考查了用样
12、本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法5、A【分析】所求方程的解即为两个交点A、B的横坐标,由于点A的横坐标已知,故只需求出点B的横坐标即可,亦即求出反比例函数的解析式即可,由于点A坐标已知,故反比例函数的解析式可求,问题得解【详解】解:把点A(1,1)代入,得m=1,反比例函数的解析式是,当y=1时,x=1,B的坐标是(1,1),方程kx+b的解是x1=1,x1=1故选:A【点睛】本题考查了求直线与双曲线的交点和待定系数法求反比例函数的解析式,属于常考题型,明确两个函数交点的横坐标是对应方程的解是关键6、A【分析】根据二次函数的定义(一般地
13、,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数)进行判断【详解】A. 可化为,符合二次函数的定义,故本选项正确;B. ,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C. ,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D. yx-3,属于一次函数,故本选项错误.故选:A.【点睛】本题考查了二次函数的定义判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.7、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物
14、线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1)抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1故选A【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律8、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可【详解】移项,得 x2-4x=-3,配方,得 x2-2x+4=-3+4,即(x-2)2=1,故选:D.【点睛】本题考
15、查了一元二次方程的解法配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.9、D【分析】设点A的纵坐标为b, 可得点B的坐标为(,b), 同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【详解】解:设点A的纵坐标为b, 因为点B在的图象上, 所以其横坐标满足=b, 根据图象可知点B的坐标为(,b), 同理可得点C的坐标为(,b), 所以点D的横坐标为,因为点D在的图象上, 故可得y=3b,所以点E的纵坐标为3b,因为点E在的图象上, =3b,因为点E在第一象限, 可得E点坐标为(,3b),故DE=,AB=所以=故选D.【点睛】本题
16、主要考查二次函数的图象与性质.10、A【分析】用一元二次方程的定义,1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项系数不为零,5看是整式即可【详解】A、由定义知A是一元二次方程,B、不是等式则B不是一元二次方程,C、二次项系数a可能为0,则C不是一元二次方程,D、含两个未知数,则D不是一元二次方程【点睛】本题考查判断一元二次方程问题,关键是掌握定义,注意特点1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项数系数不为零,5看是整式二、填空题(每小题3分,共24分)11、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CDAB,根据垂径定理的推理和垂径定理得到CD
17、必过圆心0,即点O、D、C共线,AD=BD=AB=40,在RtOAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可【详解】解:连接OA、如图,设O的半径为R,CD为水深,即C点为弧AB的中点,CDAB,CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,在RtOAD中,OA=50,OD=50-x,AD=40,OD2+AD2=OA2,(50-x)2+402=502,解得x=1,即水深CD约为为1故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.12、2【分析】连接O
18、A、OB,求出AOB=得到ABC是等边三角形,即可得到半径OA=AB=2.【详解】连接OA、OB,AOB=,OA=OB,ABC是等边三角形,OA=AB=2,故答案为:2.【点睛】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.13、1s或3s【解析】根据题意可以得到15=5x2+20x,然后求出x的值,即可解答本题【详解】y=5x2+20x,当y=15时,15=5x2+20x,得x1=1,x2=3,故答案为1s或3s【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答14、且【分析】根据根的判别式和一元二次方程的定义即可
19、求解.【详解】根据题意有 ,解得且故答案为且【点睛】本题主要考查根的判别式和一元二次方程的定义,掌握根的判别式和一元二次方程的定义是解题的关键.15、【分析】根据二次根式有意义的条件得出即可求解.【详解】若代数式有意义,则,解得:,即实数x的取值范围为.故填:【点睛】本题考查二次根式有意义的条件,熟练掌握二次根式有意义即根号内的式子要大于等于零是关键.16、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可【详解】解:连接AG并延长交BC于点D,D为BC中点又G为重心,又.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟
20、练掌握基本知识,属于中考常考题型17、2+2【分析】如图,构造等腰OAF,使得AOAF,OAF120,连接CF,OB,取AF的中点J,连接EJ证明EJ是定值,可得点E的运动轨迹是以J为圆心,EJ为半径的圆,由此即可解决问题【详解】如图,构造等腰OAF,使得AOAF,OAF120,连接CF,OB,取AF的中点J,连接EJBACOAF120,BAOCAF,ABAC,AOAF,OABFAC(SAS),CFOB,四边形BCDA是平行四边形,AEEC,AJJF,EJCF,点E的运动轨迹是以J为圆心,EJ为半径的圆,易知OJ当点E在OJ的延长线上时,OE的值最大,最大值为OJ+JE,故答案为2+2【点睛】
21、本题考查的是圆的综合,难度较大,解题关键是找出EJ是最大值.18、【分析】连接OA,根据切线的性质求出OAP90,解直角三角形求出OA和AOB,求出OAP的面积和扇形AOB的面积即可求出答案【详解】解:连接OA,PA是O的切线,OAP90,AOP60,OP2AO,由勾股定理得:,解得:AO2,阴影部分的面积为,故答案为:【点睛】本题考查的是切线性质,勾股定理,三角形面积和扇形面积,能够根据切线性质,求出三角形的三边是解题的关键.三、解答题(共66分)19、(1)y-x2-2x6;(2)存在,D (,);(2)-4t-2或0t1【分析】(1)根据点A的坐标结合线段AB的长度,可得出点B的坐标,根
22、据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)由抛物线解析式,求出顶点C的坐标,从而求出直线BC解析式,设D (d,-2d+4),根据已知可知AD=AB=6时,ABCBAD,从而列出关于d的方程,解方程即可求解; (2)将抛物线的表达式变形为顶点时,依此代入点A,B的坐标求出t的值,再结合图形即可得出:当抛物线与线段AB有且只有一个公共点时t的取值范围【详解】(1)点A的坐标为(-4,-2),将点A向右平移6个单位长度得到点B,点B的坐标为(2,-2)抛物线y-x2+bxc过点,, 解得抛物线表达式为y-x2-2x6 (2)存在. 如图由(1)得,y-x2-2x6-(x+1)2
23、7,C (-1,7) 设直线BC解析式为ykxb解之得,lBC:y-2x4设D (d,-2d+4),在ABC中AC=BC当且仅当AD=AB=6时,两三角形相似即(-4-d)2+(-2+2d-4)2=26时,ABCBAD,解之得,d1=、d2=2(舍去)存在点D,使ABC和以点A,B,D构成的三角形相似,此时点D (,);(2)如图:抛物线y-x2+bxc顶点在直线上 抛物线顶点坐标为 抛物线表达式可化为把代入表达式可得解得又抛物线与线段AB有且只有一个公共点,-4t-2 把代入表达式可得解得,又抛物线与线段AB有且只有一个公共点,0t1 综上可知的取值范围时-4t-2或0t1【点睛】本题考查了
24、点的坐标变化、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及三角形相似,解题的关键是:(1)根据点的变化,找出点B的坐标,根据点A,B的坐标,利用待定系数法求出抛物线的表达式;(2)假设ABCBAD,列出关于d的方程,(2)代入点A,B的坐标求出t值,利用数形结合找出t的取值范围20、在线段AB上且距离点A为1、6、处【分析】分DPC90,PDC90,PDC90三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形【详解】(1)如图,当DPC90时,DPA+BPC90,A90,DPA+PDA90,BPCPDA,ADBC,
25、B=180-A=90,AB,APDBCP,AB=7,BP=AB-AP,AD=2,BC=3,AP27AP+60,AP1或AP6,(2)如图:当PDC90时,过D点作DEBC于点E,AD/BC,A=B=BED=90,四边形ABED是矩形,DEAB7,AD=BE=2,BC3,ECBC-BE=1,在RtDEC中,DC2EC2+DE250,设APx,则PB7x,在RtPAD中PD2AD2+AP24+x2,在RtPBC中PC2BC2+PB232+(7x)2,在RtPDC中PC2PD2+DC2 ,即32+(7x)250+4+x2,解方程得:(3)当PDC90时,BCD90,点P在AB的延长线上,不合题意;点
26、P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、处【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键21、 (1)反比例函数的表达式是y=;(2)当mx时,x的取值范围是1x0或x1;(3)AB=2【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)求出直线的解析式,解组成的方程组求出B的坐标,根据A、B的坐标结合图象即可得出答案;(3)根据A、B的坐标利用勾股
27、定理分别求出OA、OB,即可得出答案【详解】(1)把A(1,2)代入y=得:k=2,即反比例函数的表达式是y=;(2)把A(1,2)代入y=mx得:m=2,即直线的解析式是y=2x,解方程组得出B点的坐标是(-1,-2),当mx时,x的取值范围是-1x0或x1;(3)过A作ACx轴于C,A(1,2),AC=2,OC=1,由勾股定理得:AO=,同理求出OB=,AB=2考点:反比例函数与一次函数的交点问题22、(1)40;(2)【分析】(1)通过添加辅助线,连接OC,证得,再通过,证得,利用等量代换可得,即可得到答案;(2)通过添加辅助线BC,证ADCACB,再利用相似的性质得,代入数值即可得到答
28、案【详解】解:(1)如图连结,CD为过点C的切线又;又,(2)如图连接BCAB是直径,点C是圆上的点ACB=90ADCDADC=ACB=90又ADCACB,则【点睛】本题考查的是圆的相关性质与形似相结合的综合性题目,能够掌握圆的相关性质是解答此题的关键23、10,1【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程 求出边长的值试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得 化简,得,解得:当时,(舍去),当时, 答:所围矩形猪舍的长为10m、宽为1m 考点:一元二次方程的应用题24、(1)该基地这两年
29、“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意列出关于x的一元二次方程,求解方程即可;(2)设售价应降低y元,则每天售出(200+50y)千克,根据题意列出关于y的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为,根据题意得解得,(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低元,则每天可售出千克根据题意,得整理得,解得,要减少库存不合题意,舍去,答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本
30、、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.25、(1)x1,x21;(2)x1,x2【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,再代入公式求出即可【详解】(1)x(2x1)+2x10,(2x1)(x+1)0,2x10,x+10,x1,x21;(2)3x26x20,这里a=3,b=-6,c=-2b24ac(6)243(2)60,x,x1,x2【点睛】本题考查了解一元二次方程的应用,能选择适当的方法解方程是解此题的关键26、 (1)见解析;(2) 【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论【详解】(1)证明:连接,是的切线;(2)解:连接,是等边三角形,的半径【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键