2023年高考数学常考知识点总结(3篇).docx

上传人:1564****060 文档编号:94250268 上传时间:2023-07-27 格式:DOCX 页数:5 大小:13.39KB
返回 下载 相关 举报
2023年高考数学常考知识点总结(3篇).docx_第1页
第1页 / 共5页
2023年高考数学常考知识点总结(3篇).docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2023年高考数学常考知识点总结(3篇).docx》由会员分享,可在线阅读,更多相关《2023年高考数学常考知识点总结(3篇).docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 2023年高考数学常考知识点总结(3篇) (1)y=f(x)对xr时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xr时,f(x+a)=-

2、f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 方程k=f(x)有解kd(d为f(x)的值域); af(x)恒成立af(x)max,;af(x)恒成立af(x)min; (1)(a0,a1,b0,nr+); (2)logan=(a0,a1,b0,b1); (3)logab的符号由口诀“同正异负”记忆; (4)alogan=n(a0,a1,n0); 推断对应是否为映射时,抓住两点: (1)a中元素必需都有象且; (2)b中元素不肯定都有原象,并且a中不同元素在b中可以有一样的象; 能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 对于反函数,应把握以下一些结论: (

3、1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有一样的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为a,值域为b,则有ff-1(x)=x(xb),f-1f(x)=x(xa); 高考数学常考学问点总结篇二 一个推导 利用错位相减法推导等比数列的前n项和: sn=a1+a1q+a1q2+a1qn-1, 同乘q得:qsn=a1q+a1q2+a1q3+a1qn, 两式相减得(1-q)sn=a1-a1qn,sn=(q1). 两个防范 (1)由a

4、n+1=qan,q0并不能马上断言an为等比数列,还要验证a10. (2)在运用等比数列的前n项和公式时,必需留意对q=1与q1分类争论,防止因忽视q=1这一特别情形导致解题失误. 三种方法 等比数列的推断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n2且nn.),则an是等比数列. (2)中项公式法:在数列an中,an0且a=anan+2(nn.),则数列an是等比数列. (3)通项公式法:若数列通项公式可写成an=cqn(c,q均是不为0的常数,nn.),则an是等比数列. 注:前两种方法也可用来证明一个数列为等比数列. 高考数学常考学问

5、点总结篇三 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有一样的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g

6、(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然; (3)曲线c1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线c2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xr时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁