《2022年高中数学必修知识点.docx》由会员分享,可在线阅读,更多相关《2022年高中数学必修知识点.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高中数学必修知识点 高三数学必修1学问点一 1.集合的含义与表示 集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把探讨对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不行重复的。 (3)元素的无序性:集合中元素的位置是可以变更的,并且变更位置不影响集合 3.集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的
2、表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来a,b,c b、描述法: 区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 xR|x-32,x|x-32 语言描述法:例:不是直角三角形的三角形 Venn图:画出一条封闭的曲线,曲线里面表示集合。 4.集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5.元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:aA 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+
3、整数集Z 有理数集Q 实数集R 6.集合间的基本关系 (1)“包含”关系(1)子集 定义:假如集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。 高三数学必修1学问点二 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或 (f(x)0); (4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2
4、. 复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即 f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上随意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,
5、关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对xR时,f(x +a)=f(x-a) 或f(x-2a )=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直
6、线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程 (1)方程k=f(x)有解 kD(D为f(x)的值域); (2)af(x) 恒成立 af(x)max,; af(x) 恒成立 af(x)mi
7、n; (3)(a0,a1,b0,nR+); log a N= ( a0,a1,b0,b1); (4)log a b的符号由口诀“同正异负”记忆; a log a N= N ( a0,a1,N0 ); 6.映射 推断对应是否为映射时,抓住两点: (1)A中元素必需都有象且唯一; (2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象; 7.函数单调性 (1)能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性; (2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 8.反函数 对于反函数,应驾驭以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函
8、数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性; (5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA). 9.数形结合 处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系. 10. 恒成立问题 恒成立问题的处理方法: (1)分别参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; 中学数学必修二学问点 1、棱柱 定义:有
9、两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱ABCDEABCDE几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 2、棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥PABCDE 几何特征:侧面、对角面
10、都是三角形;平行于底面的截面与底面相 似,其相像比等于顶点到截面距离与高的比的平方。 3、棱台 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如四棱台ABCDABCD 几何特征:上下底面是相像的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点 4、圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 5、圆锥 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。 6、圆台 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形 第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页