《统计学必知知识点合集_高等教育-统计学.pdf》由会员分享,可在线阅读,更多相关《统计学必知知识点合集_高等教育-统计学.pdf(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、统计学知识点合集 1.试验和事件:对某事物或现象所进行的观察或实验叫试验,把结果叫事件。2.基本事件(elementary event):如果一个事件不能分解成两个或更多个事件,就称为基本事件。一次观察只能有一个基本事件。3.样本空间:一个试验中所有的基本事件的全体称为样本空间。4.古典概型:如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件 A 发生的概率为该事件所包含的基本事件个数 m 与样本空间中所包含的基本事件个数 n 的比值。5.统计概型:在相同条件下随机试验 n 次,某事件 A出现 m 次(mn),则 m/n 称为事件 A发生的频率。随着 n 增大,该频率围绕某一
2、常数 p 上下波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值就是该事件的概率。6.概率加法:(1)两个互斥事件:P(A+B)=P(A)+P(B);任意两随机事件:P(A+B)=P(A)+P(B)-P(AB)。7.事件独立(independent):一个事件发生与否不会影响另一个事件发生的概率,公式为:P(AB)=P(A)P(B)。互斥(相依赖)一定不独立,不独立不一定互斥(相依赖)。8.全概率公式:根据某一事件发生的各种原因的概率,计算该事件的概率。计算公式为:n1iii)A|B(P)A(P)B(P。9.贝叶斯公式:在条件概率的基础上寻找事件发生的原因。计算公式为:n1iiiiii)A|
3、B(P)A(P)A|B(P)A(P)B|A(P,分母就是全概率公式。也称为逆概率公式。该公式是在观察到事件 B已发生的条件下,寻找导致 A发生的每个原因 Ai的概率。P(Ai)称为验前概率,P(Ai|B)是验后概率。10.0-1分布:1,0 x,qp)x(Px-1x。0-1分布也称为两点分布,即非 A 即 B。关于是否的概率统统是 0-1分布。性别。11.二项分布:现实生活中,许多事件只是具有两种互斥结果的离散变量。如男性和女性、某种化验结果的阴性阳性,这就是二项分布。x-nxxnqpC)xX(P。参数为 n,p,记为 XB(n,p)。E(X)=np,D(X)=npq。当成功的概率很小,而试验
4、次数很大时,二项分布接近泊松分布,此时=np。即 P0.25,n20,np5。二项定理近似服从正态分布。二项分布是 0-1分布的 n 重实验,表示含量为 n 的样本中,有 X个所需结果的概率。12.二项分布的正态近似:)a(-)b(dte21qpC)xx(P2t-xxxbax-nxxn21221,其中 a=npqnp-x1,b=npqnp-x2,q=1-p。欢迎下载 2 13.超几何分布:nNm-nM-NnMCCC)2X(P。即二项分布中,无放回的情况。14.泊松分布(poisson distribution):用来描述在一指定时间范围内或在指定的面积之内某事件出现的次数的分布。如某企业中每月
5、发生的事故次数、单位时间内到达某一服务柜台需要服务的顾客人数、人寿保险公司每天收到的死亡声明个数、某种仪器每月出现故障的次数等。公式为:!xe)X(P-x,E(X)=,D(X)=。是给定时间间隔内事件的平均数。15.期望:各可能值 xi与其对应概率 pi的乘积之和为该随机变量 X的期望,即n1iiipx。16.概率密度满足的条件:(1)f(x)0;(2)-1dx)x(f。连续型随机变量的概率密度是其分布函数的倒数。ba)a(F-)b(F)x(f。-dx)x(xf)x(E;-22dx)x(fE(x)-x)x(D。17.正态分布(normal distribution):正态分布的概率密度为:22
6、2)-x(-e21)x(f,xR。记作 X(2,)。18.正态分布图形特点:(1)f(x)0,即整个概率密度曲线都在 x 轴上方;(2)f(x)相对于 x=对称,并在 x=处取到最大值,最大值为21;(3)曲线的陡缓由决定,越大,越平缓,越小,曲线越陡峭;(4)当 x 趋于无穷时,曲线以 x 轴为渐近线。19.正态分布的例子:某地区同年龄组儿童的发育特征、某公司的销售量、同一条件下产品的质量以平均质量为中心上下摆动、特别差和特别好的都是少数,多数在中间状态,如人群中的高个子和矮个子都是少数,中等身材居多等。20.标准正态分布,即在正态分布中,=0,=1,有2x-2e21)x(f,即 XN(0,
7、1)。用表示分布函数,表示概率密度。(-x)=1-(x)。21.方差:即每个随机变量取值与期望值的离差平方的期望值。随机变量的方差计算公式为:22i1i2i22)X(E-)X(Ep)X(E-x)X(E-X E)X(D。22.标准差:随机变量的方差的平方根为标准差,记)X(D。标准差与随机变量 X有相同的度量单位。能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定
8、这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 3 23.期望、标准差、离散系数的使用:如果期望相同,那么比较标准差;如果期望不同,那么比较离散系数。24.3准则:由标准正态分布得:当 XN(0,1)时,P(|X|1)=2(1)-1=0.6826;P(|X|2)=2(2)-1=0.9545;P(|X|3)=2(3)
9、-1=0.9973.这说明 X 的取值几乎全部集中在-3,3之间,超出这个范围的不到 0.3%。将结论推广到一般正态,即 XN(,)时,有 P(|X-|)=0.6826;P(|X-|2)=0.9545;P(|X-|3)=0.9973。可以认为 X的值一定落在(-3,+3)内。25.矩:(1)n1ikikXn1m为样本 k阶矩,其反映出总体 k阶矩的信息,当 k=1时,即均值;(2)n1ikik)X-X(n1v为样本 k阶中心矩,它反映出总体 k阶中心矩的信息,当 k=2时,即方差;(3)232n1ii3n1ii3))XX(()XX(n为样本偏度,它反映总体偏度的信息,偏度反映了随机变量密度函数
10、曲线在众数两边的对称偏斜性;(4)3))X-X()X-X(nn1i22in1i4i4为样本峰度,它反映出总体峰度的信息,峰度反映密度函数曲线在众数附近的峰的尖峭程度。26.充分统计量:统计量加工过程中一点信息都不损失的统计量称为充分统计量。27.因子分解定理:充分统计量判定方法。当 X=(X1,X2,,Xn)是来自正态分布 N(,2)的一个样本时,若已知,则2n1ii)-X(是2的充分统计量,若2已知,则n1iiXn1X是的充分统计量。28.精确抽样分布和渐近分布:在总体 X的分布类型已知时,若对任一自然数 n,都能导出统计量 T=(X1,X2,Xn)的分布数学表达式,这种分布就是精确抽样分布
11、,包括卡方、F,t分布;当 n 较大时,用极限分布作为抽样分布的一种近似,这种极限分布称为渐近分布,如中心极限定理。29.卡方分布:设随机变量 X1,X2,Xn相互独立,且 Xi服从标准正态分布 N(0,1),则它们的平方和n1i2iX服从自由度为 n 的2分布。E(2)=n;D(2)=2n;2具有可加性;当自由度增加到足够大时,2分布的概率密度曲线趋于对称,当 n 趋于无穷时,2的能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事
12、件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 4 极限分布是正态分布。30.t 分布:也称为学生氏分布。设随机变量 XN(0,1),Y2(n),且 X 与 Y 独立,则n/YXt,其分布称为 t 分布,记为 t(n),n 是自由度。t 分布的
13、密度函数是偶函数。当 n2 时,E(t)=0,;当 n3 时,D(t)=n/(n-2)。t(n)的方差比 N(0,1)大一些。自由度为 1的分布称为柯西分布,随着 n 增加,t 分布的密度函数越来越接近标准正态分布的密度函数。实际应用中,当 n30 时,t 分布于标准正态分布很接近。另有一个关于 t 分布的抽样分布:)1-n(tS)-X(n,称为服从自由度为(n-1)的 t 分布。31.F分布:设随机变量 Y与 Z独立,且 Y和 Z分别服从自由度为 m 和 n 的2分布,随机变量 X如下:mZnYn/Zm/YX。则成 X服从第一自由度为 m,第二自由度为 n 的 F分布,记为 XF(m,n)。
14、E(X)=n/(n-2),n2;D(X)=)4-n)(2-n(m)2(n22nm,n4。32.t 分布与 F分布的关系:如果随机变量 X服从 t(n)分布,则 X2服从 F(1,n)的 F分布。这在回归系数显著性检验中有用。33.X的抽样分布(sampling distribution):当总体分布为正态分布时,X的抽样分布仍然是正态分布,此时 E(X)=,D(X)=2/n,则),(NX2n。其说明当用样本均值去估计总体均值时,平均来说没有偏差(无偏性);当 n 越来越大时,X的散布程度越来越小,即用X估计越来越准确。34.中心极限定理(central limit theorem):不管总体的
15、分布是什么,只要总体的方差2有限且要求 n30,此时样本均值X的分布总是近似正态分布,即XN(,2/n)。35.样本比例的抽样分布:如果在样本大小为 n 的样本中具有某一特征的个体数为 X,则样本比例为:)n)1(,(NnXp。是总体比例,即 p=X/n=。36.两个样本均值之差的分布:若为两个总体,则:212121)X(E)X(E)X-X(E;2221212121nn)X(D)X(D)X-X(D;若是两个样本,则:能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某
16、一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 5 2121)p-p(E;22211121n)1(n)1()p-p(D。37.样本方差的分布:设 X1,X2,Xn为来自正态分布的样本,则设总体分布为 N(,2)
17、,则样本方差 S2的分布为:)1-n(S)1-n(222。38.两个样本方差比的分布:设 X1,X2,Xn是来自正态分布的样本,y1,y2,yn也是来自正态分布的样本,且 Xi与 yi独立,则)1-n,1-n(F/S/S/S/S21222y212x22212y2x。39.参数估计(parameter estimation):用样本统计量去估计总体的参数。40.点估计(point estimate):用样本统计量的某个取值直接作为总体参数的估计值。41.区间估计(interval estimate):是在点估计的基础上,给出总体参数估计的而一个区间范围,该区间通常由样本统计量加减估计误差得到。4
18、2.置信区间(confidence interval):在区间估计中,由样本统计量所造成的总体参数的估计区间称为置信区间。43.置信水平(confidence level):如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例为置信水平,也称为置信度或置信系数。其含义为:如果做了 100 次抽样,大概有 95 次找到的区间包含真值,而不是 95%的可能落在区间,因为统计量不涉及概率问题。44.无偏性(inbiasedenss):指估计量抽样分布的期望等于被估计的总体参数。设总体参数为,估计量为,如果 E()=,则称 为的无偏估计量。45.有效性(efficiency):
19、指对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效。46.一致性(consistency):指随着样本量的增大,点估计量的值越来越接近被估总体的参数,换个说法,一个大样本给出的估计量要比一个小样本给出的估计量更接近总体参数。47.样本量与置信水平、总体方差和估计误差的关系:样本量与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需的样本量也就越大;样本量与总体方差成正比,总体的差异越大,所要求的样本量也越大;样本量与估计误差的平方成反比,即可接受的估计误差的平方越大,所需的样本量就越小。48.圆整法则:将样本量取成较大的整数,也就是将小数点后面的数值一律进位成整数。49.两类
20、错误:一类是原假设 H0为真却拒绝,这类错误用表示,称为弃真;另一类是原假设为伪而我们却接受,这种错误用表示,也称存伪。50.两类错误的控制原则:如果减小错误,就会增大犯错误的机会;若减小错误,也会增大犯错误的机会。规则是:首先控制错误,这是因为原假设是什么常常是明确的,而备择假设是什么则常常是模糊的。51.P 值:P 值是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。P 值越小,拒绝原假设的理由就越充分。P 值的长处是它反映了观察到的实际数据与原假设之间不一致的概率值。能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空
21、间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 6 52.双侧检验与单侧检验:双侧检验主要是检验是否相等,如 90 年的婴儿体重与 89 年婴
22、儿体重是否相等;另一种是单侧检验,即关心的假设问题带有方向性,如灯泡的使用寿命,汽车行驶距离等;另一种是数值越小越好,如废品率、生产成本等。53.统计量的选择:在一个总体参数的检验中,主要统计量有三个,z、t 和2。z 和 t 用于均值和比例检验,2用于方差检验。统计量选择步骤如下:(1)是否是大样本,如果是,那么如果总体呈正态分布,样本统计量也呈正态分布;如果总体不呈正态分布,样本统计量渐进服从正态分布;此时可以使用 z 统计量(2)如果是小样本,那么观察,如果已知,样本统计量将服从正态分布,此时可以用 z 统计量(3)如果未知,则只能使用样本标准差,样本统计量服从 t 分布,应采用 t 统
23、计量。t 统计量的精度不如 z统计量,这是总体信息未知所需要付出的代价。54.总体比例检验公式:n)-1(-pz000。P 为样本比例,0 是总体比例的假设值。55.总体(population):包含所研究的全部个体的集合,组成总体的每一个元素称为个体。当总体的范围难以确定时,可根据研究的目的来定义总体。56.样本(sample):样本是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量。57.参数(parameter):参数是用来描述总体特征的概括性数字度量。58.统计量(statistic):统计量是用来描述样本特征的概括性数字度量。抽样的目的就是根据样本统计量估计总体参数。统
24、计量中不能包含未知参数。59.变量(variable):说明现象某种特征的概念,特点是从一次观察到下一次观察结果会呈现出差别或变化。变量分为分类变量、顺序变量、数值型变量,数值型变量又分为离散型变量和连续型变量。60.概率抽样(probability sampling):也称随机抽样,指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。概率抽样分为简单随机抽样、分层抽样、整群抽样、系统抽样和多阶段抽样。61.简单随机抽样(simple random sampling):从包括总体 N 个单位的抽样框中随机的一个一个的抽取 n 个单位作为样本,每个单位的入样概率是相等的。62.非概
25、率抽样(non-simple random sampling):指抽取样本时不依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。包括方便抽样、判断抽样、自愿样本、滚雪球抽样和配额抽样。63.抽样误差(sampling error):指由于抽样的随机性引起的样本结果与总体真值之间的误差。64.频数(frequency):是落在某一特定类别或组中的数据个数。把各个类别及落在其中的相应频数全部列出,并用表格形式表现出来,称为频数分布。65.列联表(contingency table)和交叉表(cross table):由两个或两个以上变量交叉分类的频数分布表称
26、为列联表。二维的列联表又称为交叉表。66.帕累托图(pareto chart):按各类别数据出现的频数多少排序后绘制的条形图。通过对条形图排序,容易看出哪类数据出现得多,哪类数据出现的少。67.饼图(pie chart):是用圆形及圆内扇形的角度来表示数值大小的图形,它主要用于表示一个样本中各组成部分的数据站全部数据的比例,对于研究结构性问题十分有用。能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某
27、一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 7 68.环形图(doughnut chart):把饼图叠在一起,挖去中间部分就是环形图。环形图可显示多个样本部分所占的相应比例,从而有利于构成的比较研究。69.累积频数(cumulative frequencies):将各种有
28、序类别或组的频数逐级累加起来得到的频数,通过累积频数可以很容易看出某一类别以下或某一类别以上的频数之和。70.组中值(class midpoint):是每一组中下限值与上限值中间的值,组中值可以作为该组数据的一个代表值,但是用组中值有一个必要的假定条件,即各组数据在本组内呈均匀分布或在组中值两侧呈对称分布,否则会产生误差。71.直方图(histogram):适用于展示分组数据分布的图形,用于大批量数据的分析。72.茎叶图(stem-and-leaf display):反映原始数据分布的图形,由茎叶两部分组成,其图形是由数字组成的。可以看出数据的分布形状及数据的离散情况且能保留原始信息,适用于小
29、数据。73.箱线图(box-plot):由最大值、最小值、中位数、两个四分位数组成,主要用于反应原始数据分布的特征,还可以进行多组数据分布特征的比较。74.线图(line plot):主要用于反应现象随时间变化的特征。75.散点图(scatter diagram):用二维坐标展示两个变量之间关系的图形。76.气泡图(bubble chart):可用于展示三个变量之间的关系。一个变量是横轴、一个变量是纵轴、一个变量用气泡大小表示。77.雷达图(radar chart):也称蜘蛛图。设有 n 组样本 S1,S2Sn,每个样本测得 P 个变量X1,X2XP,要绘制这 P 个变量的雷达图,具体做法是,
30、先画一个圆,然后将圆 P 等分,得到 P个点,令这 P 个点分别对应 P个变量,再将这 P 个点与圆心连线,得到 P 个辐射状的半径,这 P 个半径分别作为 P 个变量的坐标轴,每个变量值的大小由半径上的点到圆心的距离表示,再将同一样本的值在 P 个坐标上的点连线。这样,n 个样本构成的 n个多边形就是雷达图。雷达图在显示或对比各变量的数值总和时十分有用,假定各变量的取值具有相同的正负号,则总的绝对值与图形所围成的区域成正比。此外,利用雷达图可以研究多个样本之间的相似度。78.众数(mode):一组数据中出现次数最多的变量值,用0M表示。主要用于测度分类数据、顺序数据、数值数据的集中趋势,不受
31、极端值影响,一组数据分布的最高峰点所对应的数值即为众数。只有在数据量较大时,众数才有意义。79.中位数(median):中位数时一组数据排序后处于中间位置上的变量值,用eM表示。中位数主要用于测度顺序数据和数值型数据的集中趋势,但不适用于分类数据。中位数位置为:(n+1)/2;中位数的值为xx21,xM1)(n/2)n/2()2/)1((en。中位数是一个位置代表值,其特点是不受极端值影响,在研究收入分配时很有用。80.平均数也称为均值(mean),是集中趋势的最主要测度值,主要适用于数值型数据,不适用于分类数据和顺序数据。平均数分为简单平均数和加权平均数,简单平均数(simple mean)
32、的计算公式为:nxnxxxxn1iin21。根据分组数据计算的平均数称为加权平均数(weighted mean)。设原始数据被分为 k 组,各组的组中值分别用k21M,M,M表示,各组变量值出现的品数分别用k21f,f,f表示,则样本加权平均能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独
33、立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 8 数的计算公式为:nfMnfMfMfMxn1iiinn2211,其中 n=if。平均数是一组数据的重心所在,是数据误差相互抵消后作用的结果。81.几何平均数(geometric mean):是 n 个变量值乘积的 n 次方根,用 G 表示,计算公式为:nn1iinn321xxxxxG。几何平均数主要用于计算平均率,当所掌握的变量值本身是
34、比率的形式时,采用几何平均法更合理。在实际中,几何平均数主要用于计算现象的平均增长率。82.异众比率(variation ratio):指非众数组的频数占总频数的比例,用rV表示,计算公式为:imimirff-1ff-fV。fm 是众数组的频数,fi 是变量值的总频数。异众比率主要用于衡量众数对一组数据的代表程度。异众比率越大,说明非众数组的频数占总频数的比重越大,众数的代表性越差;异众比率越小,非众数组的频数占总频数的比重越小,众数的代表性越好。异众比率可用于分类数据、顺序数据和数值型数据。83.四分位差(quartile deviation):也称为内距或四分间距(inter-quarti
35、le range):是上四分位数与下四分位数之差,用dQ表示,计算公式为:LUdQ-QQ。四分位差反映了中间 50%数据的离散程度,其数值越小,中间的数越集中;数值越大,中间的数越分散。四分位数不受极值影响。可用于顺序数据和数值数据,但不能用于分类数据。84.极差(range):也称为全距,用 R表示,指一组数据的最大值和最小值之差。计算公式为:)x(min-)x(maxRii。极差容易受极端值影响。85.平均差(mean deviation):也称为平均绝对离差(mean absolute deviation):是各变量值与其平均数离差绝对值的平均数。用dM表示。平均差以平均数为中心,反应了
36、每个数据与平均数的平均差异程度,能全面反应一组数据的平均差异程度,但由于为避免出现0 而取绝对值,所以实际中应用较少。根据未分组数据计算平均差的公式为:nx-xMn1iid;根据分组数据计算平均差的公式为:nfx-MMk1iiid。86.方差(variance)与标准差(standard variance):方差是各变量值与其平均数离差平方的平均数。方差的平方根是标准差。设样本方差为2S,根据分组和未分组数据计算样本方能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则
37、某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 9 差的公式为:1-nf)x-M(s,1-n)x-x(sk1ii2i2n1i2i2,其中 n-1 是自由度。标准差更具有实际意义。87.自由度(degree o
38、f freedom):自由度指附加各独立的观测值的约束或限制的个数。当样本数据的个数为 n 时,若样本平均数x确定后,则附加给 n 个观测值的约束个数是 1 个,因此只有 n-1个数据可以自由取值。例如,假定样本有 3 个数,2,4,9,则x=5,那么如果前两个值取 5 和 8,则第三个数必须取 2 才能使x=5,所以有一个数是不能自由取值的,所以自由度是 n-1。88.标准分数(standard score):是变量值与其平均数的离差除以标准差后的值,也称为标准化值或 z 分数,计算公式为:sx-xzii。标准分数给出了一组数据中各数值的相对位置。比如,如果某个数值的标准分数为-1.5,就知
39、道该数值低于平均数 1.5 倍的标准差。标准分数具有均值为 0,标准差为 1 的特性,实际上 z 分数只是对数据进行了线性转换。用于数据标准化和检测离散数据。89.经验法估计数据的相对位置:当一组数据对称分布时,约有 68%的数据在平均数1 个标准差内;约有 95%的数据在平均数2 个标准差内;约有 99%的数据在平均数3 个标准差内。三个标准差之外的数据称为离群点。90.切比雪夫不等式(Chebyshevs inequality):经验法只适合对称分布数据,而切比雪夫不等式适用于任何分布的数据,但只给了下界,即所占比例至少是多少。切比雪夫不等式公式为:2DX)EX-X(P。根据该公式可知,至
40、少有(1-1/)个数据落在 k个标准差之内,对于 k=2,该不等式的含义是,至少有 75%的数据落在2 个标准差之内。91.离散系数:也称为变异系数(coefficient of variation),是一组数据的标准差与其相应的平均数之比,计算公式为:xsvs。离散系数是测度数据离散程度的相对统计量,主要是用于比较不同样本数据的离散程度。离散系数大,说明数据的离散程度大。离散系数是比较平均水平不同或计量单位不同的不同组别的变量值的离散程度。92.离散测度总结:分类数据主要用异众比率来测度离散程度;顺序数据主要用四分位数来测度离散程度;数值数据主要用方差和标准差测度离散程度;而对于不同的样本数
41、据,用离散系数比较离散程度。93.偏态(skewness):偏态是对数据分布对称性的测度。测度偏态的统计量是偏态系数(coefficient of skewness),记作 SK。根据未分组和分组的原始数据计算偏态系数的公式为:3k1ii3i33insf)x-M(SK,s)2)(1()x-x(nSKnn。如果一组数据的分布是对称能分解成两个或更多个事件就称为基本事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度
42、逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 10 的,则偏态系数等于 0,表明分布是对称的,若偏态系数大于 1 或小于-1,则称为高度偏态分布;若偏态系数在 0.51 或-1-0.5,则是中等偏态分布。根据分组的 SK公式中,很明显是将离差的三次方的平均数除以3s,是将偏态系数转化为相对数。94
43、.相对数:是两个有联系的指标的比值,它可以从数量上反映两个相互联系的现象之间的对比关系。95.峰态(kurtosis):是对数据分布平峰或尖峰程度的测度。测度峰态的统计量是峰态系数(coefficient of kurtosis),记作 K。峰态通常与标准正态分布比较而言的。如果数据服从标准正态分布,则峰度为 0,否则为平峰分布或尖峰分布。根据未分组和分组数据计算峰态系数的公式为:422i4is)3-n)(2-n)(1-n()1-n()x-x(3-)x-x()1n(nK,3-nsf)x-M(K4k1ii4i。当 K0时为尖峰分布,数据的分布更集中;当 K0.8,说明盖度相关;0.5-0.8说明
44、中度相关,0.3-0.5说明低度相关,r0.3,说明不相关。133.r 的显著性检验方法:(1)提出假设:H0:=0;H1:0;(2)计算检验的统计量:)2-n(tr-12-nrt2;(3)决策:根据给定的和 df=n-2,查 t 分布表,得出 t/2(n-2)的临界值。若|t|t/2,则拒绝零假设,表明总体的两个变量之间存在显著性管系。134.斯皮尔曼相关系数(Spearman):该系数用来度量顺序水准变量间的线性相关关系。它是利用两变量的秩次大小作线性分析。适用条件有二:第一,两个变量的变量值是以等级次序表示的资料;(2)一个变量的变量值是等级数据,另一个变量的变量值是等距或比率数据,且两
45、总体不要求是正态分布,样本容量不一定大于 30。缺点是计算精度不高。斯皮尔曼系数用 rR表示,公式为:)1-n(nD6-1r22R,其中 D 是两个变量每对数据等级之差;n 是两列变量值的对数。135.肯德尔系数(kendall):肯德尔等级相关系数用于反映分类变量相关性的指标,适用于两个变量均为有序分类的情况。这种指标采用非参数检验方法测度变量间的相关关系,利用变量的秩计算一致对数目和非一致对数目。如果两变量具有较强的正相关,则一致对数目 U 较大,否则一致对数目和非一致对数目应该相近。肯德尔系数计算公式如下:)1-n(n2)V-U(。136.偏相关分析:其是在扣除其他因素的作用大小以后,重
46、新来测度这两个因素间的关联程度。这种方法的目的在于消除其他变量关联性的传递效应。偏相关系数计算公式为:223213231312)3(12r-1r-1rr-rr。137.距离分析:距离分析是对观测量之间或变量之间相似或不相似的程度的一种测度,根据变量的不同类型,可以有许多距离、相似程度测量指标供用户选择。但由于距离分析只是一个预分析过程,所以距离分析不会给出 P 值,而只能给出各变量/记录间距离的大小,以供用户自行判断相似性。调用距离分析过程可对变量内部各观察单位间的数值进行距离相关分析,以考察相互间的接近程度,也可用于考察变量的相似程度。在距离分析中,主要利用变量间的相似性测度和不相似性测度度
47、量研究对象之间的关系。138.回归分析:侧重于测度变量之间的关系强度,并通过一定数学表达式将这种关系描述出来,进而确定一个或几个变量(自变量)的变化对另一个特定变量(因变量)的影响程度。139.回归分析解决的问题:(1)确定变量之间的表达式;(2)对关系式的可信程度进行检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响是显著的,那些是不显著的;(3)预测。140.自变量和因变量:被预测或被解释的变量称为因变量;用来预测或用来解释因变量的变量称为自变量。如预测一定的贷款余额条件下的不良贷款是多少,被预测的不良贷款,是因变量,用来预测的是贷款余额,是自变量。能分解成两个或更多个事件就称为基本
48、事件一次观察只能有一个基本事件样本空间一个试验中所有的基本事件的全体称为样本空间古典概型如果某一随机试验的结果有限而且各个结果出现的可能性相等则某一事件发生的概率为该事现次则称为事件发生的频率随着增大该频率围绕某一常数上下波动且波动幅度逐渐减小趋于稳定这个频率的稳定值就是该事件的概率概率加法两个互斥事件任意两随机事件事件独立一个事件发生与否不会影响另一个事件发生的概率概率计算式为贝叶斯式在条件概率的基础上寻找事件发生的原因计算式为分母就是全概率式也称为逆概率式该式是在观察到事件已发生的条件下寻找导致发生的每个原因的概率称为验前概率是验后概率分布分布也称为两点分布即非 欢迎下载 15 141.一
49、元线性回归:当回归中只涉及一个自变量时称为一元回归,若因变量 y 与自变量 x 之间的为线性关系时,是一元线性回归。142.回归模型(regression model):描述因变量 y 如何依赖于自变量 x 和误差的方程称为回归模型。只涉及一个自变量的一元线性回归模型可表示为 y=0+1x+。143.误差项:是一个服从正态分布的随机变量,且独立,即N(0,2)。独立性意味着对于一个特定的 x 值,它所对应的与其他 x 所对应的不相关。因此,对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关。这表明,在 x 取某个确定值的情况下,y 的观察值非常靠近直线;当2较大时,
50、y 的观察值将偏离直线。对于任何一个给定的 x 值,y 都服从期望值为0+1x,方差为2的正态分布,且对于不同的 x都具有相同的方差。144.回归方程(regression equation):描述因变量 y 的期望值如何依赖于自变量 x 的方程。一元线性回归方程为:E(y)=0+1x。145.估计的回归方程(estimated regression equation):用样本统计量0和1代替回归方程中未知参数0和1,即估计的回归方程。0表示回归直线在纵轴上的截距;1是回归系数。146.最小二乘估计:用最小化图中垂直方向的离差平方和来估计参数0和1,根据这一方法确定模型参数0和1的方法称为最小