《2018年四川省达州市中考数学试卷.pdf》由会员分享,可在线阅读,更多相关《2018年四川省达州市中考数学试卷.pdf(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1页(共 27页)2018 年四川省达州市中考数学试卷年四川省达州市中考数学试卷一、单项选择题一、单项选择题:(每题(每题 3 分,共分,共 30 分)分)1(3 分)2018 的相反数是()A2018B2018CD2(3 分)二次根式中的 x 的取值范围是()Ax2Bx2Cx2Dx23(3 分)下列图形中是中心对称图形的是()ABCD4(3 分)如图,ABCD,145,380,则2 的度数为()A30B35C40D455(3 分)下列说法正确的是()A“打开电视机,正在播放达州新闻”是必然事件B天气预报“明天降水概率 50%”是指明天有一半的时间会下雨”C甲、乙两人在相同的条件下各射击
2、10 次,他们成绩的平均数相同,方差分别是 S甲20.3,S乙20.4,则甲的成绩更稳定D数据 6,6,7,7,8 的中位数与众数均为 76(3 分)平面直角坐标系中,点 P 的坐标为(m,n),则向量可以用点 P 的坐标表示为(m,n);已知(x1,y1),(x2,y2),若 x1x2+y1y20,则与互相垂直第 2页(共 27页)下面四组向量:(3,9),(1,);(2,0),(21,1);(cos30,tan45),(sin30,tan45);(+2,),(2,)其中互相垂直的组有()A1 组B2 组C3 组D4 组7(3 分)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,
3、然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数 y(单位:N)与铁块被提起的高度 x(单位:cm)之间的函数关系的大致图象是()ABCD8(3 分)如图,ABC 的周长为 19,点 D,E 在边 BC 上,ABC 的平分线垂直于 AE,垂足为 N,ACB 的平分线垂直于 AD,垂足为 M,若 BC7,则 MN 的长度为()AB2CD39(3 分)如图,E,F 是平行四边形 ABCD 对角线 AC 上两点,AECFAC连接 DE,第 3页(共 27页)DF 并延长,分别交 AB、BC 于点 G、H,连接 GH,则的值为()ABCD110(3 分)如图,二次函数
4、yax2+bx+c 的图象与 x 轴交于点 A(1,0),与 y 轴的交点 B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线 x2下列结论:abc0;9a+3b+c0;若点 M(,y1),点 N(,y2)是函数图象上的两点,则 y1y2;a其中正确结论有()A1 个B2 个C3 个D4 个二、填空题(每小题二、填空题(每小题 3 分,共分,共 18 分)分)11(3 分)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市 2018 年快递业务量将达到 5.5 亿件,数据 5.5 亿用科学记数法表示为12(3 分)已知 am3,an2,则 a2mn的值为13(3
5、分)若关于 x 的分式方程2a 无解,则 a 的值为14(3 分)如图,平面直角坐标系中,矩形 OABC 的顶点 A(6,0),C(0,2)将矩形 OABC 绕点 O 顺时针方向旋转,使点 A 恰好落在 OB 上的点 A1处,则点 B 的对应点 B1的坐标为第 4页(共 27页)15(3 分)已知:m22m10,n2+2n10 且 mn1,则的值为16(3 分)如图,RtABC 中,C90,AC2,BC5,点 D 是 BC 边上一点且 CD1,点 P 是线段 DB 上一动点,连接 AP,以 AP 为斜边在 AP 的下方作等腰 RtAOP 当P 从点 D 出发运动至点 B 停止时,点 O 的运动
6、路径长为三、解答题三、解答题17(6 分)计算:(1)2018+()2|2|+4sin60;18(6 分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值19(7 分)为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题(1)本次调查中,一共调查了名市民;扇形统计图中,B 项对应的扇形圆心角第 5页(共 27页)是度;补全条形统计图;(2)若甲、乙两人上班时从 A、
7、B、C、D 四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率20(6 分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度 用测角仪在 A 处测得雕塑顶端点 C 的仰角为 30,再往雕塑方向前进 4 米至 B 处,测得仰角为 45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)21(7 分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行某自行车店在销售某型号自行车时,以高出进价的 50%标价已知按标价九折销售该型号自行车 8 辆与将标价直降 100 元销售 7 辆获利相同
8、(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出 51 辆;若每辆自行车每降价 20 元,每月可多售出 3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?22(8 分)已知:如图,以等边ABC 的边 BC 为直径作O,分别交 AB,AC 于点 D,E,过点 D 作 DFAC 交 AC 于点 F(1)求证:DF 是O 的切线;(2)若等边ABC 的边长为 8,求由、DF、EF 围成的阴影部分面积23(9 分)矩形 AOBC 中,OB4,OA3分别以 OB,OA 所在直线为 x 轴,y 轴,建立如图 1 所示的平
9、面直角坐标系F 是 BC 边上一个动点(不与 B,C 重合),过点 F 的反第 6页(共 27页)比例函数 y(k0)的图象与边 AC 交于点 E(1)当点 F 运动到边 BC 的中点时,求点 E 的坐标;(2)连接 EF,求EFC 的正切值;(3)如图 2,将CEF 沿 EF 折叠,点 C 恰好落在边 OB 上的点 G 处,求此时反比例函数的解析式24(11 分)阅读下列材料:已知:如图 1,等边A1A2A3内接于O,点 P 是上的任意一点,连接 PA1,PA2,PA3,可证:PA1+PA2PA3,从而得到:是定值(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;证明:如图 1,
10、作PA1M60,A1M 交 A2P 的延长线于点 MA1A2A3是等边三角形,A3A1A260,A3A1PA2A1M第 7页(共 27页)又 A3A1A2A1,A1A3PA1A2P,A1A3PA1A2MPA3MA2PA2+PMPA2+PA1,是定值(2)延伸:如图 2,把(1)中条件“等边A1A2A3”改为“正方形 A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?(3)拓展:如图 3,把(1)中条件“等边A1A2A3”改为“正五边形 A1A2A3A4A5”,其余条件不变,则(只写出结果)25(12 分)如图,抛物线经过原点 O(0,0),点 A(1,1),点(1)求抛物线解析式;(
11、2)连接 OA,过点 A 作 ACOA 交抛物线于 C,连接 OC,求AOC 的面积;(3)点 M 是 y 轴右侧抛物线上一动点,连接 OM,过点 M 作 MNOM 交 x 轴于点 N 问:是否存在点 M,使以点 O,M,N 为顶点的三角形与(2)中的AOC 相似,若存在,求出点 M 的坐标;若不存在,说明理由第 8页(共 27页)2018 年四川省达州市中考数学试卷年四川省达州市中考数学试卷参考答案与试题解析参考答案与试题解析一、单项选择题一、单项选择题:(每题(每题 3 分,共分,共 30 分)分)1【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案【解答】解:2018
12、的相反数是2018,故选:B【点评】此题主要考查了相反数,关键是掌握相反数的定义2【分析】根据被开方数是非负数,可得答案【解答】解:由题意,得2x+40,解得 x2,故选:D【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键3【分析】根据把一个图形绕某一点旋转 180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B【点评】此题主要考查了中心对称图形,关
13、键是掌握中心对称图形的定义4【分析】根据平行线的性质和三角形的外角性质解答即可【解答】解:ABCD,145,4145,第 9页(共 27页)380,234804535,故选:B【点评】此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答5【分析】直接利用随机事件以及众数、中位数的定义以及方差的定义分别分析得出答案【解答】解:A、打开电视机,正在播放达州新闻”是随机事件,故此选项错误;B、天气预报“明天降水概率 50%,是指明天有 50%下雨的可能,故此选项错误;C、甲、乙两人在相同的条件下各射击 10 次,他们成绩的平均数相同,方差分别是 S20.3,S20.4,则甲的成绩更稳定
14、,正确;D、数据 6,6,7,7,8 的中位数为 7,众数为:6 和 7,故此选项错误;故选:C【点评】此题主要考查了随机事件以及众数、中位数的定义以及方差的定义,正确把握相关定义是解题关键6【分析】根据两个向量垂直的判定方法一一判断即可;【解答】解:31+(9)()60,与不垂直221+0(1)0,与垂直cos30sin30+tan45tan450,于不垂直+0,与不垂直故选:A【点评】本题考查平面向量、零指数幂、特殊角的三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型7【分析】根据题意,利用分类讨论的数学思想可以解答本题【解答】解:由题意可知,第 10页(共 27页)
15、铁块露出水面以前,F拉+F浮G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答8【分析】证明BNABNE,得到 BABE,即BAE 是等腰三角形,同理CAD 是等腰三角形,根据题意求出 DE,根据三角形中位线定理计算即可【解答】解:BN 平分ABC,BNAE,NBANBE,BNABNE,在BNA 和BNE 中,BNABNE,BABE,BAE 是等腰三角形,同理CAD 是等腰三角形,点 N 是 AE 中点,点 M 是 AD 中点(
16、三线合一),MN 是ADE 的中位线,BE+CDAB+AC19BC19712,DEBE+CDBC5,MNDE故选:C【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键9【分析】首先证明 AG:ABCH:BC1:3,推出 GHAC,推出BGHBAC,可得()2()2,由此即可解决问题【解答】解:四边形 ABCD 是平行四边形第 11页(共 27页)ADBC,DCAB,ACCA,ADCCBA,SADCSABC,AECFAC,AGCD,CHAD,AG:DCAE:CE1:3,CH:ADCF:AF1:3,AG:ABCH:BC1:3,G
17、HAC,BGHBAC,()2()2,故选:C【点评】本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题10【分析】根据二次函数的图象与系数的关系即可求出答案【解答】解:由开口可知:a0,对称轴 x0,b0,由抛物线与 y 轴的交点可知:c0,abc0,故正确;抛物线与 x 轴交于点 A(1,0),第 12页(共 27页)对称轴为 x2,抛物线与 x 轴的另外一个交点为(5,0),x3 时,y0,9a+3b+c0,故正确;由于2,且(,y2)关于直线 x2 的对称点的坐标为(,y2),y1y2,
18、故正确,2,b4a,x1,y0,ab+c0,c5a,2c3,25a3,a,故正确故选:D【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型二、填空题(每小题二、填空题(每小题 3 分,共分,共 18 分)分)11【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值10 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:5.5 亿5 5000 00005.5108,故答案为:5.5108【点评】此题考查科学记数法的
19、表示方法科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值12【分析】首先根据幂的乘方的运算方法,求出 a2m的值;然后根据同底数幂的除法的运第 13页(共 27页)算方法,求出 a2mn的值为多少即可【解答】解:am3,a2m329,a2mn4.5故答案为:4.5【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:底数 a0,因为0 不能做除数;单独的一个字母,其指数是 1,而不是 0;应用同底数幂除法的法则时,底数 a 可是单项式,也可以是多
20、项式,但必须明确底数是什么,指数是什么13【分析】直接解分式方程,再利用当 12a0 时,当 12a0 时,分别得出答案【解答】解:去分母得:x3a2a(x3),整理得:(12a)x3a,当 12a0 时,方程无解,故 a;当 12a0 时,x3 时,分式方程无解,则 a1,故关于 x 的分式方程2a 无解,则 a 的值为:1 或故答案为:1 或【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键14【分析】连接 OB1,作 B1HOA 于 H,证明AOBHB1O,得到 B1HOA6,OHAB2,得到答案【解答】解:连接 OB1,作 B1HOA 于 H,由题意得,OA6,ABOC2,则
21、tanBOA,BOA30,OBA60,由旋转的性质可知,B1OBBOA30,第 14页(共 27页)B1OH60,在AOB 和HB1O,AOBHB1O,B1HOA6,OHAB2,点 B1的坐标为(2,6),故答案为:(2,6)【点评】本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键15【分析】将 n2+2n10 变形为_10,据此可得 m,是方程 x22x10 的两根,由韦达定理可得 m+2,代入m+1+可得【解答】解:由 n2+2n10 可知 n01+010,又 m22m10,且 mn1,即 mm,是方程 x22x10 的两根m+2m+1+2+1
22、3,故答案为:3【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出 m,是方程x22x10 的两根及韦达定理第 15页(共 27页)16【分析】过 O 点作 OECA 于 E,OFBC 于 F,连接 CO,如图,易得四边形 OECF为矩形,由AOP 为等腰直角三角形得到 OAOP,AOP90,则可证明OAEOPF,所以 AEPF,OEOF,根据角平分线的性质定理的逆定理得到 CO 平分ACP,从而可判断当 P 从点 D 出发运动至点 B 停止时,点 O 的运动路径为一条线段,接着证明CE(AC+CP),然后分别计算 P 点在 D 点和 B 点时 OC 的长,从而计算它们的差即可得
23、到 P 从点 D 出发运动至点 B 停止时,点 O 的运动路径长【解答】解:过 O 点作 OECA 于 E,OFBC 于 F,连接 CO,如图,AOP 为等腰直角三角形,OAOP,AOP90,易得四边形 OECF 为矩形,EOF90,CECF,AOEPOF,OAEOPF,AEPF,OEOF,CO 平分ACP,当 P 从点 D 出发运动至点 B 停止时,点 O 的运动路径为一条线段,AEPF,即 ACCECFCP,而 CECF,CE(AC+CP),OCCE(AC+CP),当 AC2,CPCD1 时,OC(2+1),当 AC2,CPCB5 时,OC(2+5),当 P 从点 D 出发运动至点 B 停
24、止时,点 O 的运动路径长2故答案为 2第 16页(共 27页)【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算也考查了全等三角形的判定与性质三、解答题三、解答题17【分析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数 5 个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:原式1+4(22)+4,1+42+2+2,7【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算18【分
25、析】直接将去括号利用分式混合运算法则化简,再解不等式组,进而得出 x 的值,即可计算得出答案【解答】解:原式3(x+1)(x1)2x+4,解得:x1,解得:x3,故不等式组的解集为:3x1,把 x2 代入得:原式0【点评】此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键19【分析】(1)根据 D 组的人数以及百分比,即可得到被调查的人数,进而得出 C 组的人第 17页(共 27页)数,再根据扇形圆心角的度数部分占总体的百分比360进行计算即可;(2)根据甲、乙两人上班时从 A、B、C、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人
26、恰好选择同一种交通工具上班的概率【解答】解:(1)本次调查的总人数为 50025%2000 人,扇形统计图中,B 项对应的扇形圆心角是 36054,C 选项的人数为 2000(100+300+500+300)800,补全条形图如下:故答案为:2000、54;(2)列表如下:ABCDA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有 16 种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4 种,所以甲、乙两人恰好选择同一种交通工具上班的概率为【点评】此题
27、考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20【分析】过点 C 作 CDAB,设 CDx,由CBD45知 BDCDx 米,根据 tanA第 18页(共 27页)列出关于 x 的方程,解之可得【解答】解:如图,过点 C 作 CDAB,交 AB 延长线于点 D,设 CDx 米,CBD45,BDC90,BDCDx 米,A30,ADAB+BD4+x,tanA,即,解得:x2+2,答:该雕塑的高度为(2+2)米【点评】本题主要考查解直角三角形的应用仰角俯角问题,
28、解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用21【分析】(1)设进价为 x 元,则标价是 1.5x 元,根据关键语句:按标价九折销售该型号自行车 8 辆的利润是 1.5x0.988x,将标价直降 100 元销售 7 辆获利是(1.5x100)77x,根据利润相等可得方程 1.5x0.988x(1.5x100)77x,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价 a 元,利润为 w 元,利用销售量每辆自行车的利润总利润列出函数关系式,再利用配方法求最值即可【解答】解:(1)设进价为 x 元,则标价是 1.5x 元,由题意得:1.5x0.988x(1.5x100)7
29、7x,解得:x1000,1.510001500(元),答:进价为 1000 元,标价为 1500 元;(2)设该型号自行车降价 a 元,利润为 w 元,由题意得:第 19页(共 27页)w(51+3)(15001000a),(a80)2+26460,0,当 a80 时,w最大26460,答:该型号自行车降价 80 元出售每月获利最大,最大利润是 26460 元【点评】此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出 w 与 a 的关系式,进而求出最值22【分析】(1)连接 CD、OD,先利用等腰三角形的性质证 ADBD,再证 OD 为ABC的中位线得 DOA
30、C,根据 DFAC 可得;(2)连接 OE、作 OGAC,求出 EF、DF 的长及DOE 的度数,根据阴影部分面积S梯形EFDOS扇形DOE计算可得【解答】解:(1)如图,连接 CD、OD,BC 是O 的直径,CDB90,即 CDAB,又ABC 是等边三角形,ADBD,BOCO,DO 是ABC 的中位线,ODAC,DFAC,DFOD,DF 是O 的切线;第 20页(共 27页)(2)连接 OE、作 OGAC 于点 G,OGFDFGODF90,四边形 OGFD 是矩形,FGOD4,OCOEODOB,且COEB60,OBD 和OCE 均为等边三角形,BODCOE60,CEOC4,EGCE2、DFO
31、GOCsin602,DOE60,EFFGEG2,则阴影部分面积为 S梯形EFDOS扇形DOE(2+4)26【点评】本题主要考查了切线的判定与性质,等边三角形的性质,垂径定理等知识判断直线和圆的位置关系,一般要猜想是相切,再证直线和半径的夹角为 90即可注意利用特殊的三角形和三角函数来求得相应的线段长23【分析】(1)先确定出点 C 坐标,进而得出点 F 坐标,即可得出结论;(2)先确定出点 F 的横坐标,进而表示出点 F 的坐标,得出 CF,同理表示出 CF,即可得出结论;(3)先判断出EHGGBF,即可求出 BG,最后用勾股定理求出 k,即可得出结论【解答】解:(1)OA3,OB4,B(4,
32、0),C(4,3),F 是 BC 的中点,F(4,),F 在反比例 y函数图象上,k46,反比例函数的解析式为 y,E 点的坐标为 3,第 21页(共 27页)E(2,3);(2)F 点的横坐标为 4,F(4,),CFBCBF3E 的纵坐标为 3,E(,3),CEACAE4,在 RtCEF 中,tanEFC,(3)如图,由(2)知,CF,CE,过点 E 作 EHOB 于 H,EHOA3,EHGGBF90,EGH+HEG90,由折叠知,EGCE,FGCF,EGFC90,EGH+BGF90,HEGBGF,EHGGBF90,EHGGBF,BG,在 RtFBG 中,FG2BF2BG2,()2()2,k
33、,第 22页(共 27页)反比例函数解析式为 y【点评】此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出 CE:CF 是解本题的关键24【分析】(2)结论:是定值 在 A4P 上截取 AHA2P,连接 HA1 想办法证明PA4A4+PHPA2+PA1,同法可证:PA3PA1+PA2,推出(+1)(PA1+PA2)PA3+PA4,可得 PA1+PA2(1)(PA3+PA4),延长即可解决问题;(3)结论:则如图 31 中,延长 PA1到 H,使得 A1HPA2,连接 A4H,A4A2,A4A1由HA4A1PA4A2,可得A4HP 是顶角为36
34、的等腰三角形,推出 PHPA4,即 PA1+PA2PA4,如图 32 中,延长PA5到 H,使得 A5HPA3同法可证:A4HP 是顶角为 108的等腰三角形,推出 PHPA4,即 PA5+PA3PA4,延长即可解决问题;【解答】解:(1)如图 1,作PA1M60,A1M 交 A2P 的延长线于点 MMPA1A2A3A160,PMA1是等边三角形,PMPA1,A1A2A3是等边三角形,A3A1A260,A3A1PA2A1M第 23页(共 27页)又 A3A1A2A1,A1A3PA1A2P,A1A3PA1A2MPA3MA2,PMPA1,PA3MA2PA2+PMPA2+PA1,是定值(2)结论:是
35、定值理由:在 A4P 上截取 AHA2P,连接 HA1四边形 A1A2A3A4是正方形,A4A1A2A1,A1A4HA1A2P,A4HA2P,A1A4HA1A2P,A1HPA1,A4A1HA2A1P,HA1PA4A1A290HA1P 的等腰直角三角形,PA4HA4+PHPA2+PA1,同法可证:PA3PA1+PA2,(+1)(PA1+PA2)PA3+PA4,PA1+PA2(1)(PA3+PA4),第 24页(共 27页)(3)结论:则理由:如图 31 中,延长 PA1到 H,使得 A1HPA2,连接 A4H,A4A2,A4A1由HA4A1PA4A2,可得A4HP 是顶角为 36的等腰三角形,P
36、HPA4,即 PA1+PA2PA4,如图 32 中,延长 PA5到 H,使得 A5HPA3同法可证:A4HP 是顶角为 108的等腰三角形,PHPA4,即 PA5+PA3PA4,故答案为【点评】本题考查圆综合题、正方形的性质、正五边形的性质、全等三角形的判定和性质等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题25【分析】(1)设交点式 yax(x),然后把 A 点坐标代入求出 a 即可得到抛物线解析式;第 25页(共 27页)(2)延长 CA 交 y 轴于 D,如图 1,易得 OA,DOA45,则可判断AOD 为等腰直角三角形,所以 ODOA2,则 D(0,2
37、),利用待定系数法求出直线 AD 的解析式为 yx+2,再解方程组得 C(5,3),然后利用三角形面积公式,利用 SAOCSCODSAOD进行计算;(3)如图 2,作 MHx 轴于 H,AC4,OA,设 M(x,x2+x)(x0),根据三角形相似的判定,由于OHMOAC,则当时,OHMOAC,即;当时,OHMCAO,即,则分别解关于 x 的绝对值方程可得到对应 M 点的坐标,由于OMHONM,所以求得的 M 点能以点 O,M,N 为顶点的三角形与(2)中的AOC 相似【解答】解:(1)设抛物线解析式为 yax(x),把 A(1,1)代入得 a1(1)1,解得 a,抛物线解析式为 yx(x),即
38、 yx2+x;(2)延长 CA 交 y 轴于 D,如图 1,A(1,1),OA,DOA45,AOD 为等腰直角三角形,OAAC,ODOA2,D(0,2),易得直线 AD 的解析式为 yx+2,解方程组得或,则 C(5,3),SAOCSCODSAOD2521第 26页(共 27页)4;(3)存在如图 2,作 MHx 轴于 H,AC4,OA,设 M(x,x2+x)(x0),OHMOAC,当时,OHMOAC,即,解方程x2+x4x 得 x10(舍去),x2(舍去),解方程x2+x4x 得 x10(舍去),x2,此时 M 点坐标为(,54);当时,OHMCAO,即,解方程x2+xx 得 x10(舍去)
39、,x2,此时 M 点的坐标为(,),解方程x2+xx 得 x10(舍去),x2,此时 M 点坐标为(,);MNOM,OMN90,MONHOM,OMHONM,当 M 点的坐标为(,54)或(,)或(,)时,以点 O,M,N为顶点的三角形与(2)中的AOC 相似【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,会解一元二次方程;理解坐标与图形性第 27页(共 27页)质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/9/2 14:15:27;用户:18366185883;邮箱:18366185883;学号:22597006