2018年辽宁省大连市中考数学试卷及解析.docx

上传人:wo****o 文档编号:93825227 上传时间:2023-07-15 格式:DOCX 页数:24 大小:218.23KB
返回 下载 相关 举报
2018年辽宁省大连市中考数学试卷及解析.docx_第1页
第1页 / 共24页
2018年辽宁省大连市中考数学试卷及解析.docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2018年辽宁省大连市中考数学试卷及解析.docx》由会员分享,可在线阅读,更多相关《2018年辽宁省大连市中考数学试卷及解析.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1(3.00分)(2018大连)3的绝对值是()A3B3CD2(3.00分)(2018大连)在平面直角坐标系中,点(3,2)所在的象限是()A第一象限B第二象限C第三象限D第四象限3(3.00分)(2018大连)计算(x3)2的结果是()Ax5B2x3Cx9Dx64(3.00分)(2018大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中的度数为()A45B60C90D1355(3.00分)(2018大连)一个几何体的三视图如图所示,则这个几何体是()A圆柱

2、B圆锥C三棱柱D长方体6(3.00分)(2018大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A8B7C4D37(3.00分)(2018大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()ABCD8(3.00分)(2018大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长设剪去的小正方形边长

3、是xcm,根据题意可列方程为()A10646x=32B(102x)(62x)=32C(10x)(6x)=32D1064x2=329(3.00分)(2018大连)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b时,x的取值范围为()Ax2B2x6Cx6D0x2或x610(3.00分)(2018大连)如图,将ABC绕点B逆时针旋转,得到EBD,若点A恰好在ED的延长线上,则CAD的度数为()A90BC180D2二、填空题(本题共6小题,每小题3分,共18分)11(3.00分)(2018大连)因式分解:x2x= 12(3.00分)(2018大

4、连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是 13(3.00分)(2018大连)一个扇形的圆心角为120,它所对的弧长为6cm,则此扇形的半径为 cm14(3.00分)(2018大连)孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为 15(3.00分)(2018大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53,若测角仪的高度是1.5m,则旗杆A

5、B的高度约为 m(精确到0.1m参考数据:sin530.80,cos530.60,tan531.33)16(3.00分)(2018大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且ABE=30,将ABE沿BE翻折,得到ABE,连接CA并延长,与AD相交于点F,则DF的长为 三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17(9.00分)(2018大连)计算:(+2)2+2218(9.00分)(2018大连)解不等式组:19(9.00分)(2018大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE求证:BE=DF2

6、0(12.00分)(2018大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动以下是根据调查结果绘制的统计图表的一部分类别ABCDEF类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %;(2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28

7、分)21(9.00分)(2018大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数22(9.00分)(2018大连)【观察】149=49,248=96,347=141,2327=621,2426=624,2525=625,2624=624,2723=621,473=141,282=96,491=49【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是 【类比】观察下列两数的积:159,258,357,45

8、6,mn,564,573,582,591猜想mn的最大值为 ,并用你学过的知识加以证明23(10.00分)(2018大连)如图,四边形ABCD内接于O,BAD=90,点E在BC的延长线上,且DEC=BAC(1)求证:DE是O的切线;(2)若ACDE,当AB=8,CE=2时,求AC的长五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24(11.00分)(2018大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90,得到AC,连接BC,将ABC沿射线BA平移,当点C到达x轴时运动停止设平移距离为m,平移后的图形在x轴下方部分的面积为S,S

9、关于m的函数图象如图2所示(其中0ma,amb时,函数的解析式不同)(1)填空:ABC的面积为 ;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围25(12.00分)(2018大连)阅读下面材料:小明遇到这样一个问题:如图1,ABC中,ACB=90,点D在AB上,且BAC=2DCB,求证:AC=AD小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分CAB,与CD相交于点E方法2:如图3,作DCF=DCB,与AB相交于点F(1)根据阅读材料,任选一种方法,证明AC=AD用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,ABC中,

10、点D在AB上,点E在BC上,且BDE=2ABC,点F在BD上,且AFE=BAC,延长DC、FE,相交于点G,且DGF=BDE在图中找出与DEF相等的角,并加以证明;若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想26(12.00分)(2018大连)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135,且AB=4(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值2018年辽宁省大连市中考数学试卷参考答案与试题解析一、

11、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1(3.00分)【分析】根据一个负数的绝对值等于它的相反数得出【解答】解:|3|=(3)=3故选:A【点评】考查绝对值的概念和求法绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是02(3.00分)【分析】直接利用第二象限内点的符号特点进而得出答案【解答】解:点(3,2)所在的象限在第二象限故选:B【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键3(3.00分)【分析】根据幂的乘方运算性质,运算后直接选取答案【解答】解:(x3)2=x6,故选:D【点

12、评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键4(3.00分)【分析】先利用等腰直角三角形的性质得出1=45,再利用平行线的性质即可得出结论;【解答】解:如图,ABC是等腰直角三角形,1=45,ll,=1=45,故选:A【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出1=45是解本题的关键5(3.00分)【分析】由常见几何体的三视图即可判断【解答】解:由三视图知这个几何体是三棱柱,故选:C【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图6(3.00分)【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答

13、】解:四边形ABCD是菱形,OA=OC=3,OB=OD,ACBD,在RtAOB中,AOB=90,根据勾股定理,得:OB=4,BD=2OB=8,故选:A【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键7(3.00分)【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率【解答】解:列表得: 123123423453456所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情

14、况数之比8(3.00分)【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据题意得:(102x)(62x)=32故选:B【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键9(3.00分)【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求【解答】解:由图象可知,当k1x+b时,x的取值范围为

15、0x2或x6故选:D【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式此题难度适中,注意掌握数形结合思想与方程思想的应用10(3.00分)【分析】根据旋转的性质和四边形的内角和是360,可以求得CAD的度数,本题得以解决【解答】解:由题意可得,CBD=,ACB=EDB,EDB+ADB=180,ADB+ACB=180,ADB+DBC+BCA+CAD=360,CBD=,CAD=180,故选:C【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答二、填空题(本题共6小题,每小题3分,共18分)11(3.00分)【分析】提取公因式x即可【解答】解:x2x=x

16、(x1)故答案为:x(x1)【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键12(3.00分)【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189【点评】本题考查中位数的意义中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错13(3.00分)【分析】根据弧长公式L=求解即可【

17、解答】解:L=,R=9故答案为:9【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=14(3.00分)【分析】根据题意可以列出相应的方程组,从而可以解答本题【解答】解:由题意可得,故答案为:【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组15(3.00分)【分析】根据三角函数和直角三角形的性质解答即可【解答】解:过D作DEAB,在D处测得旗杆顶端A的仰角为53,ADE=53,BC=DE=6m,AE=DEtan5361.337.98m,AB=AE+BE=AE+CD=7.98+1.5=9.48m9.5m,故答案为:9.5【点评】此题考查了考查

18、仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用16(3.00分)【分析】如图作AHBC于H由CDFAHC,可得=,延长构建方程即可解决问题;【解答】解:如图作AHBC于HABC=90,ABE=EBA=30,ABH=30,AH=BA=1,BH=AH=,CH=3,CDFAHC,=,=,DF=62,故答案为62【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39

19、分)17(9.00分)【分析】根据完全平方公式和零指数幂的意义计算【解答】解:原式=3+4+44+=【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍18(9.00分)【分析】先求出每个不等式的解集,再求出不等式组的解集即可【解答】解:解不等式得:x1,解不等式得:x3,不等式组的解集为x1【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键19(9.00分)【分析】只要证明BEODFO即可;【解答】证明

20、:四边形ABCD是平行四边形,OA=OC,OD=OB,AE=CF,OE=OF,在BEO和DFO中,BEODFO,BE=DF【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20(12.00分)【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的

21、有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为1020%=50人,最喜欢篮球的有5032%=16人,最喜欢足球的学生数占被调查总人数的百分比=100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为450=54人【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系解题的关键是灵活运用所学知识解决问题四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21(9.00分)【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20

22、)个字,根据工作时间=工作总量工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解答:甲平均每分钟打60个字【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键22(9.00分)【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60m代入mn,得mn=m2

23、+60m=(m30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60m代入mn,得mn=m2+60m=(m30)2+900,m=30时,mn的最大值为900故答案为900【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握23(10.00分)【分析】(1)先判断出BD是圆O的直径,再判断出BDDE,即可得出

24、结论;(2)先判断出ACBD,进而求出BC=AB=8,进而判断出BCDDCE,求出CD,再用勾股定理求出BD,最后判断出CFDBCD,即可得出结论【解答】解:(1)如图,连接BD,BAD=90,点O必在BD上,即:BD是直径,BCD=90,DEC+CDE=90,DEC=BAC,BAC+CDE=90,BAC=BDC,BDC+CDE=90,BDE=90,即:BDDE,点D在O上,DE是O的切线;(2)DEAC,BDE=90,BFC=90,CB=AB=8,AF=CF=AC,CDE+BDC=90,BDC+CBD=90,CDE=CBD,DCE=BCD=90,BCDDCE,CD=4,在RtBCD中,BD=

25、4同理:CFDBCD,CF=,AC=2AF=【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24(11.00分)【分析】(1)由图2结合平移即可得出结论;(2)判断出AOBCEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论【解答】解:(1)结合ABC的移动和图2知,点B移动到点A处,就是图2中,m

26、=a时,S=SABD=,点C移动到x轴上时,即:m=b时,S=SABC=SABC=,故答案为,(2)如图2,过点C作CEx轴于E,AEC=BOA=90,BAC=90,OAB+CAE=90,OAB+OBA=90,OBA=CAE,由旋转知,AB=AC,AOBCEA,AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,OA=2OB,AB2=5OB2,由(1)知,SABC=AB2=5OB2,OB=1,OA=2,A(2,0),B(0,1),直线AB的解析式为y=x+1;(3)由(2)知,AB2=5,AB=,当0m时,如图3,AOB=AAF,OAB=AAF,AOBAAF,由运动知,AA=m,

27、AF=m,S=AAAF=m2,当m2时,如图4同的方法得,AF=m,CF=m,过点C作CEx轴于E,过点B作BMCE于E,BM=3,CM=1,易知,ACEFCH,CH=,在RtFHC中,FH=CH=由平移知,CGF=CBM,BMC=GHC,BMCGHC,GH=,GF=GHFH=S=SABCSCFG=(2m)2,即:S=【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键25(12.00分)【分析】(1)方法一:如图2中,作AE平分CAB,与CD相交于点E想办法证明AECAED即可;方法二:

28、如图3中,作DCF=DCB,与AB相交于点F想办法证明ACD=ADC即可;(2)如图4中,结论:DEF=FDG理由三角形内角和定理证明即可;结论:BD=kDE如图4中,如图延长AC到K,使得CBK=ABC首先证明DFEBAK,推出=,推出BK=kDE,再证明BCDBCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分CAB,与CD相交于点ECAE=DAE,CAB=2DCB,CAE=CDB,CDB+ACD=90,CAE+ACD=90,AEC=90,AE=AE,AEC=AED=90,AECAED,AC=AD方法二:如图3中,作DCF=DCB,与AB相交于点FDCF=DCB,A=2D

29、CB,A=BCF,BCF+ACF=90,A+ACF=90,AFC=90,ACF+BCF=90,BCF+B=90,ACF=B,ADC=DCB+B=DCF+ACF=ACD,AC=AD(2)如图4中,结论:DEF=FDG理由:在DEF中,DEF+EFD+EDF=180,在DFG中,GFD+G+FDG=180,EFD=GFD,G=EDF,DEF=FDG结论:BD=kDE理由:如图4中,如图延长AC到K,使得CBK=ABCABK=2ABC,EDF=2ABC,EDF=ABK,DFE=A,DFEBAK,=,BK=kDE,AKB=DEF=FDG,BC=BC,CBD=CBK,BCDBCK,BD=BK,BD=kD

30、E【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题26(12.00分)【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB=4,可得出点B的坐标为(m+2,4a+2m5),设BD=t,则点C的坐标为(m+2+t,4a+2m5t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(

31、2)的结论结合SABC=2可求出a值,分三种情况考虑:当m2m2,即m2时,x=2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m5m2m2,即2m5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m5,即m5时,x=2m5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论【解答】解:(1)y=ax22amx+am2+2m5=a(xm)2+2m5,抛物线的顶点坐标为(m,2m5)故答案为:(m,2m5)(2)过点C作直线AB的垂线,

32、交线段AB的延长线于点D,如图所示ABx轴,且AB=4,点B的坐标为(m+2,4a+2m5)ABC=135,设BD=t,则CD=t,点C的坐标为(m+2+t,4a+2m5t)点C在抛物线y=a(xm)2+2m5上,4a+2m5t=a(2+t)2+2m5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=(3)ABC的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m5分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m5=2,整理,得:m214m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m5m2m2,即2m5时,有2m5=2,解得:m=;当m2m5,即m5时,有(2m5m)2+2m5=2,整理,得:m220m+60=0,解得:m3=102(舍去),m4=10+2综上所述:m的值为或10+2【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m5及m5三种情况考虑第24页(共24页)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁