《2022四川高考理科数学真题及答案.pdf》由会员分享,可在线阅读,更多相关《2022四川高考理科数学真题及答案.pdf(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023考试备考资料word 版本欢迎下载 20222022 年年四川四川高考理科数学真题及答案高考理科数学真题及答案 注意事项:注意事项:1 1答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。好条形码。2 2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需回答选择题时,选出每小题答案后,用铅笔把答题
2、卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。写在本试卷上无效。3 3考试结束后,将本试卷和答题卡一并交回。考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共一、选择题:本题共 1212 小题,每小题小题,每小题 5 5 分,共分,共 6060 分。在每小题给出的四个选分。在每小题给出的四个选项中,只有项中,只有一项是符合题目要求的。一项是符合题目要求的。1若,则()A B C D 2某社区通过公益讲座以普及社区居民的垃圾分类知识
3、为了解讲座效果,随机抽取 10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这 10 位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A讲座前问卷答题的正确率的中位数小于 B讲座后问卷答题的正确率的平均数大于 C讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差 D讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3 设全集,集合,则()A B C D 4如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为 1,则该多面体的体积为()2023考试备考资料word 版本欢迎下载 A8 B12 C16 D20 5函数在区间的图像大致为()A B C D 6当
4、时,函数取得最大值,则()A B C D1 7在长方体中,已知与平面和平面所成的角均为,则()A BAB与平面所成的角为 C D与平面所成的角为 8沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,()2023考试备考资料word 版本欢迎下载 A B C D 9 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和若,则()A B C D 10椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称若直线的斜率之积为,则C的离心率为(
5、)A B C D 11设函数在区间恰有三个极值点、两个零点,则的取值范围是()A B C D 12已知,则()A B C D 二、填空题:本题共二、填空题:本题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分。分。13设向量,的夹角的余弦值为,且,则_ 14 若 双 曲 线的 渐 近 线 与 圆相 切,则_ 15从正方体的 8 个顶点中任选 4 个,则这 4 个点在同一个平面的概率为_ 16已知中,点D在边BC上,当取得最小值时,_ 2023考试备考资料word 版本欢迎下载 三、解答题:共三、解答题:共 7070 分解答应写出文字说明、证明过程或演算步骤第分解答应写出
6、文字说明、证明过程或演算步骤第 17172121 题为必考题为必考题,每个试题考生都必须作答第题,每个试题考生都必须作答第 2222、2323 题为选考题,考生根据要求作答。题为选考题,考生根据要求作答。(一)必考题:共 60 分 17(12 分)记为数列的前n项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值 18(12 分)在四棱锥中,底面 (1)证明:;(2)求PD与平面所成的角的正弦值 19(12 分)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得 10 分,负方得 0 分,没有平局三个项目比赛结束后,总得分高的学校获得冠军已知甲学校在三个项目中获胜的概率分别
7、为 0.5,0.4,0.8,各项目的比赛结果相互独立(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望 20(12 分)设抛物线的焦点为F,点,过F的直线交C于M,N两点当直线MD垂直于x轴时,(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为当取得最大值时,求直线AB的方程 21(12 分)已知函数(I)若,求a的取值范围;(2)证明:若有两个零点,则环(二)选考题:共二)选考题:共 1010 分请考生在第分请考生在第 2222、2323 题中任选一题作答如果多做,则按所做的题中任选一题作答如果多做,则按所做的第一题计分第一题计分 2
8、2选修 4-4:坐标系与参数方程(10 分)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程2023考试备考资料word 版本欢迎下载 为(s为参数)(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标 23选修 4-5:不等式选讲(10 分)已知a,b,c均为正数,且,证明:(1);(2)若,则 2023考试备考资料word 版本欢迎下载 理科数学理科数学解析解析 一、选择题:本题共一、选择题:本题共 1212 小题,每小题小题,每小题 5 5 分,共分,共 6060 分分.在每小题给出的四个选项在
9、每小题给出的四个选项中,只有一项是符合题目要求的中,只有一项是符合题目要求的.1.若,则()A.B.C.D.【答案】C【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】故选:C 2.某社区通过公益讲座以普及社区居民的垃圾分类知识为了解讲座效果,随机抽取 10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这 10 位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于 B.讲座后问卷答题的正确率的平均数大于 C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差 2023考试备考资料word 版本欢迎下载 D.讲座后问卷答题
10、的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为,所以错;讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以 B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以 C 错;讲座后问卷答题的正确率的极差为,讲座前问卷答题的正确率的极差为,所以错.故选:B.3.设全集,集合,则()A.B.C.D.【答案】D【解析】【分析】解方程求出集合 B,再由集合的运算即可得解.【详解】由题意,所以,所以.故
11、选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为 1,则该多面体的体积为()2023考试备考资料word 版本欢迎下载 A.8 B.12 C.16 D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积.故选:B.5.函数在区间的图象大致为()A.B.2023考试备考资料word 版本欢迎下载 C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.详解】令,则,所以为奇函数,排除 BD;又当时,所以,排除 C.故选:A.6.当时,函数取得最大值,则(
12、)A.B.C.D.1【答案】B【解析】【分析】根据题意可知,即可解得,再根据即可解出【详解】因为函数定义域为,所以依题可知,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有 故选:B.7.在长方体中,已知与平面和平面所成的角均为,则()2023考试备考资料word 版本欢迎下载 A.B.AB与平面所成的角为 C.D.与平面所成的角为【答案】D【解析】【分析】根据线面角定义以及长方体的结构特征即可求出【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,解得 对于 A,A错误;对于 B,过作于,易知平面,所以与平面所成角为,因
13、为,所以,B 错误;对于 C,C 错误;对于 D,与平面所成角为,而,所以D正确 故选:D 8.沈括的 梦溪笔谈 是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以 O为圆心,OA为半径的圆弧,C 是的 AB中点,D在上,“会2023考试备考资料word 版本欢迎下载 圆术”给出的弧长的近似值 s 的计算公式:当时,()A.B.C.D.【答案】B【解析】【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,又,所以,则,故,所以.故选:B.2023考试备考资料word 版本欢迎下载 9.甲、乙两个圆锥的母线长
14、相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和若,则()A.B.C.D.【答案】C【解析】【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,2023考试备考资料word 版本欢迎下载 所以.故选:C.10.椭圆的左顶点为 A,点 P,Q均在 C 上,且关于 y轴对称若直线的斜率之积为,则 C的离心率为()A.B.C.D.【答案】A【解析】
15、【分析】设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.【详解】解:,设,则,则,故,又,则,所以,即,所以椭圆的离心率.故选:A.11.设函数在区间恰有三个极值点、两个零点,则的取值范围是()2023考试备考资料word 版本欢迎下载 A.B.C.D.【答案】C【解析】【分析】由的取值范围得到的取值范围,再结合正弦函数的性质得到不等式组,解得即可【详解】解:依题意可得,因,所以,要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:则,解得,即 故选:C 12.已知,则()A.B.C.D.【答案】A【解析】【分析】由结合三角函数的性质可得;构造函数,
16、利用导数可得,即可得解.2023考试备考资料word 版本欢迎下载【详解】因为,因为当 所以,即,所以;设,所以在单调递增,则,所以,所以,所以,故选:A 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.13.设向量,的夹角的余弦值为,且,则_【答案】【解析】【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,又,所以,所以 故答案为:14.若双曲线的渐近线与圆相切,则_【答案】【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆
17、心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可 2023考试备考资料word 版本欢迎下载【详解】解:双曲线的渐近线为,即,不妨取,圆,即,所以圆心为,半径,依题意圆心到渐近线的距离,解得或(舍去)故答案为:15.从正方体的 8 个顶点中任选 4个,则这 4个点在同一个平面的概率为_【答案】.【解析】【分析】根据古典概型的概率公式即可求出【详解】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率 故答案为:16.已知中,点 D在边 BC上,当取得最小值时,_【答案】#【解析】【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.【详解】设,则
18、在中,在中,所以 2023考试备考资料word 版本欢迎下载,当且仅当即时,等号成立,所以当取最小值时,.故答案为:.三、解答题:共三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤第分解答应写出文字说明、证明过程或演算步骤第 1721题为必考题,每个试题考生都必须作答第题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求题为选考题,考生根据要求作答作答.(一)必考题:共(一)必考题:共 60 分分 17.记为数列的前 n 项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值【答案】(1)证明见解析;(2)【解析】【分析】(1)依题意可得,根据,作差
19、即可得到,从而得证;(2)由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得【小问 1 详解】2023考试备考资料word 版本欢迎下载 解:因为,即,当时,得,即,即,所以,且,所以是以 为公差的等差数列【小问 2 详解】解:由(1)可得,又,成等比数列,所以,即,解得,所以,所以,所以,当或时 18.在四棱锥中,底面 (1)证明:;(2)求 PD与平面所成的角的正弦值【答案】(1)证明见解析;(2).【解析】【分析】(1)作于,于,利用勾股定理证明,根据线面垂直的性质可得,从而可得平面,再根据线面垂直的性质即可得证;2023考试备考资料word 版本欢迎
20、下载(2)以点为原点建立空间直角坐标系,利用向量法即可得出答案.【小问 1 详解】证明:在四边形中,作于,于,因为,所以四边形为等腰梯形,所以,故,所以,所以,因为平面,平面,所以,又,所以平面,又因平面,所以;【小问 2 详解】解:如图,以点为原点建立空间直角坐标系,则,则,设平面的法向量,则有,可取,则,2023考试备考资料word 版本欢迎下载 所以与平面所成角的正弦值为.19.甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得 10分,负方得 0分,没有平局三个项目比赛结束后,总得分高的学校获得冠军已知甲学校在三个项目中获胜的概率分别为 0.5,0.4,0.8,各项目的比赛结
21、果相互独立(1)求甲学校获得冠军的概率;(2)用 X表示乙学校的总得分,求 X的分布列与期望【答案】(1);(2)分布列见解析,.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,的可能取值为,再分别计算出对应的概率,列出分布列,即可求出期望【小问 1 详解】设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为 【小问 2 详解】依题可知,的可能取值为,所以,,,2023考试备考资料word 版本欢迎下载,.即的分布列为 0 10 20 30 0.16 0.44
22、0.34 0.06 期望.20.设抛物线的焦点为F,点,过F的直线交C于M,N两点 当直线 MD垂直于 x 轴时,(1)求 C 的方程;(2)设直线与 C的另一个交点分别为 A,B,记直线的倾斜角分别为当取得最大值时,求直线 AB的方程【答案】(1);(2).【解析】【分析】(1)由抛物线的定义可得,即可得解;(2)设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.【小问 1 详解】抛物线的准线为,当与 x轴垂直时,点 M 的横坐标为 p,此时,所以,所以抛物线 C 的方程为;【小问 2 详解】设,直线,由可得,2023考试备考资料wor
23、d 版本欢迎下载 由斜率公式可得,直线,代入抛物线方程可得,所以,同理可得,所以 又因为直线 MN、AB的倾斜角分别为,所以,若要使最大,则,设,则,当且仅当即时,等号成立,所以当最大时,设直线,代入抛物线方程可得,所以,所以直线.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.21.已知函数(1)若,求 a 的取值范围;(2)证明:若有两个零点,则环【答案】(1)(2)证明见的解析【解析】2023考试备考资料word 版本欢迎下载【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件,再利用导数即可得证.【小问 1
24、 详解】的定义域为,令,得 当单调递减 当单调递增,若,则,即 所以的取值范围为【小问 2 详解】由题知,一个零点小于 1,一个零点大于 1 不妨设 要证,即证 因为,即证 因为,即证 即证 即证 下面证明时,设,则 2023考试备考资料word 版本欢迎下载 设 所以,而 所以,所以 所以在单调递增 即,所以 令 所以在单调递减 即,所以;综上,所以.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式 这个函数经常出现,需要掌握(二)选考题:共(二)选考题:共 10分请考生在第分请考生在第 22、23 题中任选一题作答如果多做,则题中任选一题作答如果多做,则按所
25、做的第一题计分按所做的第一题计分 选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22.在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s 为参数)(1)写出普通方程;2023考试备考资料word 版本欢迎下载(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标【答案】(1);(2)的交点坐标为,的交点坐标为,【解析】【分析】(1)消去,即可得到的普通方程;(2)将曲线的方程化成普通方程,联立求解即解出【小问 1 详解】因为,所以,即的普通方程为【小问 2 详解】因为,所以,即的普通方程为,由,即的普通方程为
26、联立,解得:或,即交点坐标为,;联立,解得:或,即交点坐标为,选修选修 4-5:不等式选讲:不等式选讲 23.已知 a,b,c 均为正数,且,证明:(1);(2)若,则【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据,利用柯西不等式即可得证;(2)由(1)结合已知可得,即可得到,再根据权方和不等式即可得证.2023考试备考资料word 版本欢迎下载【小问 1 详解】证明:由柯西不等式有,所以,当且仅当时,取等号,所以;【小问 2 详解】证明:因为,由(1)得,即,所以,由权方和不等式知,当且仅当,即,时取等号,所以.历年考试真题为作者精心整理,如有需要,请下载。历年考试真题为作者精心整理,如有需要,请下载。