最新数学专业英语.pdf

上传人:c****4 文档编号:93096068 上传时间:2023-06-28 格式:PDF 页数:10 大小:532.46KB
返回 下载 相关 举报
最新数学专业英语.pdf_第1页
第1页 / 共10页
最新数学专业英语.pdf_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《最新数学专业英语.pdf》由会员分享,可在线阅读,更多相关《最新数学专业英语.pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢1 Differential Calculus Newton and Leibniz,quite independently of one another,were largely responsible for developing the ideas of integral calculus to the point where hitherto insurmountable problems could be solved by more or less routine methods.The successful a

2、ccomplishments of these men were primarily due to the fact that they were able to fuse together the integral calculus with the second main branch of calculus,differential calculus.In this article,we give su fficient conditions for controllability of some partial neutral functional differential equat

3、ions with infinite delay.We suppose that the linear part is not necessarily densely defined but satisfies the resolvent estimates of the Hille-Yosida theorem.The results are obtained using the integrated semigroups theory.An application is given to illustrate our abstract result.Key words Controllab

4、ility;integrated semigroup;integral solution;infinity delay 1 Introduction In this article,we establish a result about controllability to the following class of partial neutral functional differential equations with infinite delay:0,),()(0txxttFtCuADxtDxtt (1)where the state variable(.)xtakes values

5、 in a Banach space).,(Eand the control(.)u is given in 0),0(2TUTL,the Banach space of admissible control functions with U a Banach space.C is a bounded linear operator from U into E,A:D(A)E E is a linear operator on E,B is the phase space of functions mapping(,0 into E,which will be specified later,

6、D is a bounded linear operator from B into E defined by BDD,)0(0 0Dis a bounded linear operator from B into E and for each x:(,T E,T 0,and t 0,T,xt represents,as usual,the mapping from(,0 into E defined by 0,(),()(txxt F is an E-valued nonlinear continuous mapping on.The problem of controllability o

7、f linear and nonlinear systems represented by ODE in finit dimensional space was extensively studied.Many authors extended the controllability concept to infinite dimensional systems in Banach space with unbounded operators.Up to now,there are a lot of works on this topic,see,for example,4,7,10,21.T

8、here are many systems that can be written as abstract neutral evolution equations with infinite delay to study 23.In recent years,the theory of neutral functional di fferential equations with infinite delay in infinite dimension was developed and it is still a field of research(see,for instance,2,9,

9、14,15 and the references therein).Meanwhile,the controllability problem of such systems was also discussed by many mathematicians,see,for example,5,8.The objective of this article is to discuss the controllability for Eq.(1),where the linear part is supposed to be non-densely defined but satisfies t

10、he resolvent estimates of the Hille-Yosida theorem.We shall assume conditions that assure global existence and give the su fficient conditions for controllability of some partial neutral functional differential equations with infinite delay.The results are obtained using the integrated semigroups th

11、eory and Banach fixed point theorem.Besides,we make use of the notion of integral solution and we do not use the analytic semigroups theory.Treating equations with infinite delay such as Eq.(1),we need to introduce the phase space B.To avoid repetitions and understand the interesting properties of t

12、he phase space,suppose that).,(BB is a(semi)normed abstract linear space of functions mapping(,0 into E,and satisfies the following fundamental axioms that were first introduced in 13 and widely discussed 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢2 in 16.(A)There exist a positive constant H and functions K

13、(.),M(.):,with K continuous and M locally bounded,such that,for any and 0a,if x:(,+a E,Bx and(.)xis continuous on,+a,then,for every t in,+a,the following conditions hold:(i)Bxt,(ii)BtxHtx)(,which is equivalent to BH)0(or everyB(iii)BxtMsxtKxttsB)()(sup)(A)For the function(.)xin(A),t xt is a B-valued

14、 continuous function for t in,+a.(B)The space B is complete.Throughout this article,we also assume that the operator A satisfies the Hille-Yosida condition:(H1)There exist and,such that)(),(A and MNnAInn,:)()(sup (2)Let A0 be the part of operator A in)(AD defined by )(,)(:)()(000ADxforAxxAADAxADxAD

15、It is well known that)()(0ADADand the operator 0A generates a strongly continuous semigroup)(00ttTon)(AD.Recall that 19 for all)(ADx and 0t,one has)()(000ADxdssTft and xtTxsdssTAt)(0)(00.We also recall that 00)(ttTcoincides on)(AD with the derivative of the locally Lipschitz integrated semigroup 0)(

16、ttS generated by A on E,which is,according to 3,17,18,a family of bounded linear operators on E,that satisfies (i)S(0)=0,(ii)for any y E,t S(t)y is strong ly continuous with values in E,(iii)sdrrsrtStSsS0)()()()(for all t,s 0,and for any 0 there exists a constant l()0,such that stlsStS)()()(or all t

17、,s 0,.The C0-semigroup 0)(ttS is exponentially bounded,that is,there exist two constants Mand,such that teMtS)(for all t 0.Notice that the controllability of a class of non-densely defined functional differential equations was studied in 12 in the finite delay case.、2 Main Results We start with intr

18、oducing the following definition.Definition 1 Let T 0 and B.We consider the following definition.We say that a function x:=x(.,):(,T)E,0 0,such that 21021),(),(tFtFfor 1,2 B and t 0.(4)Using Theorem 7 in 1,we obtain the following result.Theorem 1 Assume that(H1),(H2),and(H3)hold.Let B such that D D(

19、A).Then,there exists a unique integral solution x(.,)of Eq.(1),defined on(,+).Definition 2 Under the above conditions,Eq.(1)is said to be controllable on the interval J=0,0,if for every initial function B with D D(A)and for any e1 D(A),there exists a control u L2(J,U),such that the solution x(.)of E

20、q.(1)satisfies 1)(ex.Theorem 2 Suppose that(H1),(H2),and(H3)hold.Let x(.)be the integral solution of Eq.(1)on(,),0,and assume that(see 20)the linear operator W from U into D(A)defined by dssCuBsSWu)()(lim0,(5)nduces an invertible operator Won KerWUJL/),(2,such that there exist positive constants 1Na

21、nd 2Nsatisfying 1NC and 21NW,then,Eq.(1)is controllable on J provided that 1)(2221000KeMNNeMD,(6)Where)(max:0tKKt.Proof Following 1,when the integral solution x(.)of Eq.(1)exists on(,),0,it is given for all t 0,by dssCustSdtddsxsFstSdtdDtSxDtxttst000)()(),()()()(Or dsxsBstSDtSxDtxtst00),()(lim)()(荐学

22、习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4 dssCuBstSt0)()(lim Then,an arbitrary integral solution x(.)of Eq.(1)on(,),0,satisfies x()=e1 if and only if dssC

23、uBstSdsxsFsSddDSxDets0001)()(lim),()()(This implies that,by use of(5),it su ffices to take,for all t J,)()()(lim)(01tdssCuBstSWtut )(),()(lim)(0011tdsxsBstSDSxDeWts in order to have x()=e1.Hence,we must take the control as above,and consequently,the proof is reduced to the existence of the integral

24、solution given for all t 0,by tstdszsFstSdtdDtSzDtPz00),()()(:)(DSzDzWCstSdtdt)()()(001 dssdzFBS)(),()(lim0 Without loss of generality,suppose that 0.Using simila r arguments as in 1,we can see hat,for every 1z,)(2Zz and t 0,210021)()()(zzKeMDtPztPz As K is continuous and 1)0(0KD,we can choose 0 sma

25、ll enough,such that 1)2221000KeMNNeMD.Then,P is a strict contraction in)(Z,and the fixed point of P gives the unique integral olution x(.,)on(,that verifies x()=e1.Remark 1 Suppose that all linear operators W from U into D(A)defined by dssCuBsbSWu)()(lim0 0 a 0,induce invertible operators W on KerWU

26、baL/),(2,such that there exist positive constants N1 and N2 satisfying 1NC and 21NW,taking NT,N large enough and following 1.A similar argument as the above proof can be used inductively in 11,)1(,Nnnn,to see that Eq.(1)is controllable on 0,T for all T 0.Acknowledgements The authors would like to th

27、ank Prof.Khalil Ezzinbi and Prof.Pierre Magal for the fruitful discussions.References 1 Adimy M,Bouzahir H,Ezzinbi K.Existence and stability for some partial neutral functional differential equations with infinite delay.J Math Anal Appl,2004,294:438 461 荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵

28、权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢5 2 Adimy M,Ezzinbi K.A class of linear partial neutral functional differential equations with nondense domain.J Dif Eq,1998,147:285 332 3 Arendt W.Resolvent

29、positive operators and integrated semigroups.Proc London Math Soc,1987,54(3):321 349 4 Atmania R,Mazouzi S.Controllability of semilinear integrodifferential equations with nonlocal conditions.Electronic J of Di ff Eq,2005,2005:1 9 5 Balachandran K,Anandhi E R.Controllability of neutral integrodiffer

30、ential infinite delay systems in Banach spaces.Taiwanese J Math,2004,8:689 702 6 Balasubramaniam P,Ntouyas S K.Controllability for neutral stochastic functional differential inclusionswith infinite delay in abstract space.J Math Anal Appl,2006,324(1):161176、7 Balachandran K,Balasubramaniam P,Dauer J

31、 P.Local null controllability of nonlinear functional differ-ential systems in Banach space.J Optim Theory Appl,1996,88:61 75 8 Balasubramaniam P,Loganathan C.Controllability of functional differential equations with unboundeddelay in Banach space.J Indian Math Soc,2001,68:191 203 9 Bouzahir H.On ne

32、utral functional di fferential equations.Fixed Point Theory,2005,5:11 21 The study of differential equations is one part of mathematics that,perhaps more than any other,has been directly inspired by mechanics,astronomy,and mathematical physics.Its history began in the 17th century when Newton,Leibni

33、z,and the Bernoullis solved some simple differential equation arising from problems in geometry and mechanics.There early discoveries,beginning about 1690,gradually led to the development of a lot of“special tricks”for solving certain special kinds of differential equations.Although these special tr

34、icks are applicable in mechanics and geometry,so their study is of practical importance.荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢6 微分方程 牛顿和莱布尼茨,完全相互独立,主要

35、负责开发积分学思想的地步,迄今无法解决的问题可以解决更多或更少的常规方法。这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实,。中心思想是微分学的概念衍生。在这篇文章中,我们建立一个关于可控的结果偏中性与无限时滞泛函微分方程的下面的类:0,),()(0txxttFtCuADxtDxtt (1)状态变量(.)x在).,(E空间值和控制用(.)u受理控制范围 0),0(2TUTL的 Banach 空间,Banach 空间。C 是一个有界的线性算子从 U 到 E,A:A:D(A)E E 上的线性算子,B 是函数的映射相空间(-,0在 E,将在后面 D 是有界的线性算子从 B 到 E 为 B

36、DD,)0(0 0D是从 B 到 E 的线性算子有界,每个 x:(,T E,T 0,,和 t0,T,xt 表示为像往常一样,从(映射-,0到由 E 定义为 0,(),()(txxt F 是一个 E 值非线性连续映射在。ODE 的代表在三维空间中的线性和非线性系统的可控性问题进行了广泛的研究。许多作者延长无限维系统的可控性概念,在 Banach 空间无限算子。到现在,也有很多关于这一主题的作品,看到的,例如,4,7,10,21。有许多方程可以无限延迟的研究 23为抽象的中性演化方程的书面。近年来,中立与无限时滞泛函微分方程理论在无限 维度仍然是一个研究领域(见,例如,2,9,14,15和其中的参

37、考文献)。同时,这种系统的可控性问题也受到许多数学家讨论可以看到的,例如,5,8。本文的目的是讨论方程的可控性。(1),其中线性部分是应该被非密集的定义,但满足的 Hille-Yosida 定理解估计。我们应当保证全局存在的条件,并给一些偏中性无限时滞泛函微分方程的可控性的充分条件。结果获得的积分半群理论和 Banach 不动点定理。此外,我们使用的整体解决方案的概念和我们不使用半群的理论分析。方程式,如无限时滞方程。(1),我们需要引入相空间 B.为了避免重复和了解的相空间的有趣的性质,假设是(半)赋范抽象线性空间函数的映射(-,0 到 E满足首次在13介绍了以下的基本公理和广泛16进行了讨

38、论。(一)存在一个正的常数 H 和功能 K,M:连续与 K 和 M,局部有界,例如,对于任何,如果 x:(,+a E,,Bx 和(.)x是在 ,+A 连续的,那么,每一个在 T,+A,下列条件成立:(i)Bxt,荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢7(ii)B

39、txHtx)(,等同与 BH)0(或者对伊B(iii)BxtMsxtKxttsB)()(sup)((a)对于函数(.)x在 A 中,t xt 是 B 值连续函数在,+a.(b)空间 B 是封闭的 整篇文章中,我们还假定算子 A 满足的 Hille-Yosida条件:(1)在和,)(),(A和 MNnAInn,:)()(sup (2)设 A0 是算子的部分一个由)(AD定义为)(,)(:)()(000ADxforAxxAADAxADxAD 这是众所周知的,)()(0ADAD和算子0A对于)(AD具有连续半群)(00ttT。回想一下,19所有)(ADx和)()(000ADxdssTft。xtTxs

40、dssTAt)(0)(00.我们还知道)()(000ADxdssTft在)(AD,这是一个关于电子所产生的局部 Lipschitz 积分半群的衍生,按3,17,18,一个有界线性算子的 E 系列,满足(iv)S(0)=0,(v)for any y E,t S(t)y 判断为 E,(vi)sdrrsrtStSsS0)()()()(for all t,s 0,对于 0 这里存在一个常数l()0,s所以 stlsStS)()()(或者 t,s 0,.C0-半群指数0)(ttS有界,即存在两个常数M和,例如teMtS)(对所有的t0。一类非密集定义泛函微分方程的可控性12研究在有限的延误。2 Main

41、 Results 我们开始引入以下定义。定义 1 设 T 0 和 B.我们认为以下的定义。我们说一个函数 X:=X:(-,T)E,0 0,所以 荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢8 21021),(),(tFtFfor 1,2 B 和 t 0.(4)使用1定

42、理 7 中,我们得到以下结论。定理 1 假设(H1),(H2)(H3),。设 B,这样 D D(A).。则,存在一个独特的整数解 x(.,)对于 Eq.(1),。(1),定义在(,+).。定义 2 在上述条件下,方程 Eq.(1)被说成是在区间 J=0,0,如果为每一个初始函数 B,D(A)和任何 e1 D(A),存在可控一个控制 u L2(J,U)的,这样的解x(.)的 Eq.(1)满足1)(ex。定理 2 假设(H1),(H2),(H3).x(.)式为整体解决方法在 Eq.(1)中(,),0。并假设(见20)的线性算子从 W 到 U 在 D(A)定义为 dssCuBsSWu)()(lim0

43、,(5)诱导可逆的算子,W存在KerWUJL/),(2正数1N和2N满足1NC 和 21NW那 么,Eq.(1)是可控的前提是在 J 1)(2221000KeMNNeMD,(6)当)(max:0tKKt.证明 以下1,当整体解决方案 x(.)式。Eq.(1)存在于(,),0,这是对所有的 t 0,dssCustSdtddsxsFstSdtdDtSxDtxttst000)()(),()()()(或者 dsxsBstSDtSxDtxtst00),()(lim)()(dssCuBstSt0)()(lim 然后,一个任意整数解 x(.)式。(1)在(,),0,满足 x()=e1,当且仅当 dssCuB

44、stSdsxsFsSddDSxDets0001)()(lim),()()(这意味着,使用(5),它足以采取对所有的 t J,)()()(lim)(01tdssCuBstSWtut )(),()(lim)(0011tdsxsBstSDSxDeWts 以 x()=e1 因此,我们必须采取上述控制,因此,证明是减少对所有的 t 0,的整体解的存在性 tstdszsFstSdtdDtSzDtPz00),()()(:)(DSzDzWCstSdtdt)()()(001 dssdzFBS)(),()(lim0 为了不失一般性,假设 0。1类似的论点,我们可以看到的1z,)(2Zz 和 t0,荐学习交流仅供学

45、习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢9 210021)()()(zzKeMDtPztPz 为 K 是1)0(0KD连续的,0 足够小,这样我们可以选择 1)2221000KeMNNeMD.然后,P 是一个严格的收缩在)(Z,和固定的 P 点给出了独特的不可分割的线上的 x(.

46、,)on(,,验证 x()=e1。注1 假设所有 D(A)从 U W 时的线性算子定义 dssCuBsbSWu)()(lim0 0 a 0,诱发可逆的算子W在KerWUbaL/),(2,如存在正常数 N1 和 N2满足1NC,同时21NW,NT中 N 足够大,下面的1。上述证明的一个类似的说法可以使用11,)1(,Nnnn,看到 Eq.(1)在0,T的所有 T0 是可控的。微分方程的研究是数学的一部分,也许比其他分支更多的直接受到力学,天文学和数学物理的推动。他的历史起源于 17 世纪,当时牛顿、莱布尼茨、伯努利家族解决了一些来自几何和力学的简单的微分方程。哲学开始于 1690 年的早期发现,

47、逐渐引起了解某些特殊类型的微分方程的大量特殊技巧的发展。尽管这些特殊的技巧只是用于相对较少的几种情况,但是他们能够解决力学和几何中出现的许多微分方程,因此,他们的研究具有重要的实际应用。基础部分选择题 1.以下与信息有关的设备计算中,用于存储信息的设备是(B )。A.光纤电缆 B.磁带机 C.通信卫星 D.路由器 2.一张加了写保护的软磁盘(C )。A.不会向外传染病毒,也不会感染病毒 B.不会向外传染病毒,但是会感染病毒 C.不会感染病毒,但是会向外传染病毒 D.既向外传染病毒,又会感染病毒 3.微型计算机硬盘正在工作,应特别注意避免(D )。A.潮湿 B.日光 C.噪声 D.震动 4.计算

48、机病毒的传染途径主要有(D)。A.操作者感染 B.屏幕和磁盘 C.接触和磁盘 D.磁盘和网络 5.表示存储器的容量时,KB的含义是(C )。A.1024个二进制位 B.1000字节 C.1024字节 D.1米 荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢10 6.目前

49、,不能向计算机输入中文信息的方式是(B )。A.扫描输入 B.电话输入 C.语音输入 D.键盘输入 7.计算机处理信息的工作过程是(B)。A.输出信息、处理与存储信息、收集信息 B.收集信息、处理与存储信息、输出信息 C.处理与存储信息、收集信息、输出信息 D.输出与处理信息、信息存储、收集信息 8.法律所不允许的侵权行为并不包括(D )。A.未经著作权人同意或授权,使用其软件作品。B.未经软件著作权人同意发表其软件作品 C.未经合作者同意,将与他人合作开发的软件当作自己单独完成的作品发表 D.未经软件著作权人同意,使用已经超出保护期的软件作品 9.鼠标属于计算机的(C )。A.特殊光标 B.输出设备 C.输入设备 D.控制器 荐学习交流仅供学习与交流如有侵权请联系网站删除谢谢精品好文档推荐学习交流仅供学习与交流如有侵权请联系网无法解决的问题可以解决更多或更少的常规方法这些成功的人主要是由于他们能够将积分学和微分融合在一起的事实的类空间值和控制用受理控制范围状态变量在间空间是一个有界的线性算子从到上的线性算子是函数的映射相空间在

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁