《【高中数学】排列组合及二项式定理复习计数原理(课件)2022-2023学年高二下学期数学人教A版选择性必修第三册.pptx》由会员分享,可在线阅读,更多相关《【高中数学】排列组合及二项式定理复习计数原理(课件)2022-2023学年高二下学期数学人教A版选择性必修第三册.pptx(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、排列组合常见典型解题方法排列组合常见典型解题方法1、分类加法计数原理、分类加法计数原理:完成一件事,有:完成一件事,有n类办法,在类办法,在第第1类办法中有类办法中有m1种不同的方法种不同的方法,在第在第2类办法中有类办法中有m2种不同的方法种不同的方法在第在第n类办法中类办法中有有m mn n种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有 种不同的方种不同的方法法.2 2、分步乘法计数原理、分步乘法计数原理:完成一件事,需要分成完成一件事,需要分成n n个步个步骤,做第骤,做第1 1步有步有m m1 1种不同的方法种不同的方法,做第做第2 2步有步有m m2 2种不同的种不同
2、的方法方法,做第,做第n n步有步有m mn n种不同的方法种不同的方法.那么完成这件事那么完成这件事共有共有 种不同的方法种不同的方法.两个计数原理两个计数原理分类计数原理分类计数原理 分步计数原理分步计数原理完成一件事,共有完成一件事,共有n类类办法,关键词办法,关键词“分类分类”区别区别1完成一件事,共分完成一件事,共分n个个步骤,关键词步骤,关键词“分步分步”区别区别2区别区别3每类办法都能独立地完成每类办法都能独立地完成这件事情,它是独立的、这件事情,它是独立的、一次的、且每次得到的是一次的、且每次得到的是最后结果,最后结果,只须一种方法只须一种方法就可完成这件事就可完成这件事。每一
3、步得到的只是中间结果,每一步得到的只是中间结果,任何一步都不能独立完成这件任何一步都不能独立完成这件事,缺少任何一步也不能完成事,缺少任何一步也不能完成这件事,这件事,只有各个步骤都完成只有各个步骤都完成了,才能完成这件事了,才能完成这件事。各类办法是互相独立的。各类办法是互相独立的。各步之间是互相关联的。各步之间是互相关联的。1.2:排列与组合排列:一般地,从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列数:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数。用符号表示.排列数公式:其
4、中:1.2:排列与组合组合:一般地,从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合。组合数:从n个不同元素中取出m(mn)个元素的所有不同组合的个数叫做从n个不同元素中取出m个元素的组合数。用符号表示.组合数公式:其中:组合数性质:判断一个具体问题是否为组合问题判断一个具体问题是否为组合问题,关键是看取关键是看取出的元素是否与顺序有关出的元素是否与顺序有关,有关就是排列有关就是排列,无关便无关便是组合是组合.判断时要弄清楚判断时要弄清楚“事件是什么事件是什么”.一一.特殊元素和特殊位置优先策略特殊元素和特殊位置优先策略例例1.由由0,1,2,3,4,5
5、可以组成多少个没有重复数字可以组成多少个没有重复数字 五位奇数五位奇数.解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_由分步计数原理得由分步计数原理得=288位置分析法和元素分析法是解决排列组合问位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法题最常用也是最基本的方法,若以元素分析为若以元素分析为主主,需先安排特殊元素需先安排特殊元素,再处理其它元素再处理其它元素.若以若以位置分析为主
6、位置分析为主,需先满足特殊位置的要求需先满足特殊位置的要求,再再处理其它位置。若有多个约束条件,往往是处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件考虑一个约束条件的同时还要兼顾其它条件二.相邻元素捆绑策略例例2.72.7人站成一排人站成一排,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不同的排法共有多少种不同的排法.甲甲乙乙丙丙丁丁由分步计数原理可得共有由分步计数原理可得共有种不同的排法种不同的排法=480解:可先将甲乙两元素捆绑成整体并看成解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个一个复合元素,同时丙丁也看成一个 复合
7、元素,再与其它元素进行排列,复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。同时对相邻元素内部进行自排。要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题,可以用可以用捆绑法来解决问题捆绑法来解决问题.即将需要相邻的元素合并即将需要相邻的元素合并为一个元素为一个元素,再与其它元素一起作排列再与其它元素一起作排列,同时同时要注意合并元素内部也必须排列要注意合并元素内部也必须排列.三三.不相邻问题插空策略不相邻问题插空策略例例3 3.一一个个晚晚会会的的节节目目有有4 4个个舞舞蹈蹈,2 2个个相相声声,3 3个个 独独唱唱,舞舞蹈蹈节节目目不不能能连连续续出出场场,则则
8、节节目目的的出出 场场顺顺序序有有多多少少种种?解解:分两步进行第一步排分两步进行第一步排2 2个相声和个相声和3 3个独唱共个独唱共 有有 种,种,第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法不同的方法由分步计数原理,节目的不同顺序共有种相相相相独独独独独独元素相离问题可先把没有位置要求的元素进元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端行排队再把不相邻元素插入中间和两端四四.定序问题倍缩空位插入策略定序问题倍缩空位插入策略例例4.74.7人排队人排队,其中甲乙丙其
9、中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:(倍缩法倍缩法)对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题,可先把这几个元素与其他元素一起可先把这几个元素与其他元素一起进行排列进行排列,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数,则共有不同排法种数则共有不同排法种数是:是:定序问题可以用倍缩法,还可转化为占位插定序问题可以用倍缩法,还可转化为占位插空模型处理空模型处理五五.重排问题求幂策略重排问题求幂策略例例5.5.把把6 6名实习生分配到名实习生分配到7 7个车间实习个车间实习,共有共有 多少种不同的
10、分法多少种不同的分法解解:完成此事共分六步完成此事共分六步:把第一名实习生分配把第一名实习生分配 到车间有到车间有 种分法种分法.7 7把第二名实习生分配把第二名实习生分配 到车间也有到车间也有7 7种分法,种分法,依此类推依此类推,由分步计由分步计数原理共有数原理共有 种不同的排法种不同的排法允许重复的排列问题的特点是以元素为研究允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地各个元素的位置,一般地n不同的元素没有限不同的元素没有限制地安排在制地安排在m个位置上的排列数为个位置上的排列数为 种种n nm
11、m六六.环排问题线排策略环排问题线排策略例例6.56.5人围桌而坐人围桌而坐,共有多少种坐法共有多少种坐法?解:解:围桌而坐与围桌而坐与坐成一排的不同点在于,坐成坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人圆形没有首尾之分,所以固定一人A A并从并从 此位置把圆形展成直线其余此位置把圆形展成直线其余4 4人共有人共有_ 种排法即种排法即 A AB BC CE ED DD DA AA AB BC CE E(5-1)5-1)!一般地一般地,n,n个不同元素作圆形排个不同元素作圆形排列列,共有共有(n-1)!(n-1)!种排法种排法.如果从如果从n n个不同元素中取出个不同元素中取出m
12、 m个元素作个元素作圆形排列共有圆形排列共有七七.多排问题直排策略多排问题直排策略例例7.87.8人排成前后两排人排成前后两排,每排每排4 4人人,其中甲乙在其中甲乙在 前排前排,丁在后排丁在后排,共有多少排法共有多少排法解解:8人排前后两排人排前后两排,相当于相当于8人坐人坐8把椅子把椅子,可以可以 把椅子排成一排把椅子排成一排.先在前先在前4个位置排甲乙两个位置排甲乙两个特殊元素有个特殊元素有_种种,再排后再排后4个位置上的个位置上的特殊元素有特殊元素有_种种,其余的其余的5人在人在5个位置个位置上任意排列有上任意排列有_种种,则共有则共有_种种.前排后排后排一般地一般地,元素分成多排的排
13、列问题元素分成多排的排列问题,可归结为一排考虑可归结为一排考虑,再分段研究再分段研究.八八.排列组合混合问题先选后排策略排列组合混合问题先选后排策略例例8.8.有有5 5个不同的小球个不同的小球,装入装入4 4个不同的盒内个不同的盒内,每盒至少装一个球每盒至少装一个球,共有多少不同的装共有多少不同的装 法法.解解:第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(包含一个复合包含一个复合 元素元素)装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法.根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_解
14、决排列组合混合问题解决排列组合混合问题,先选后排是最基本先选后排是最基本的指导思想的指导思想.此法与此法与相邻元素捆绑策略相似吗?九九.小集团问题先整体局部策略小集团问题先整体局部策略例例9.9.用用1,2,3,4,51,2,3,4,5组成没有重复数字的五位数组成没有重复数字的五位数 其中恰有两个偶数夹其中恰有两个偶数夹1,1,这两个奇数之这两个奇数之 间间,这样的五位数有多少个?这样的五位数有多少个?解:把解:把,当作一个小集团与排队当作一个小集团与排队共有共有_种排法,再排小集团内部共有种排法,再排小集团内部共有_种排法,由分步计数原理共有种排法,由分步计数原理共有_种排法种排法.3152
15、4小集团小集团小集团排列问题中,先整体后局小集团排列问题中,先整体后局部,再结合其它策略进行处理。部,再结合其它策略进行处理。十.元素相同问题隔板策略例例10.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个,有多少种分配方案?有多少种分配方案?解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法班级,每一种插板方法对应一种分法
16、共有共有_种分法。种分法。一班二班三班四班五班六班七班将将n n个相同的元素分成个相同的元素分成m m份(份(n n,m m为正整数)为正整数),每份至少一个元素每份至少一个元素,可以用可以用m-1m-1块隔板,插入块隔板,插入n n个元素排成一排的个元素排成一排的n-1n-1个空隙中,所有分法数个空隙中,所有分法数为为十一十一.正难则反总体淘汰策略正难则反总体淘汰策略例例11.从从0,1,2,3,4,5,6,7,8,9这十个数字中取出三这十个数字中取出三 个数,使其和为不小于个数,使其和为不小于10的偶数的偶数,不同的不同的 取法有多少种?取法有多少种?解:这问题中如果直接求不小于解:这问题
17、中如果直接求不小于10的偶数很的偶数很 困难困难,可用总体淘汰法。可用总体淘汰法。这十个数字中有这十个数字中有5 5个偶数个偶数5 5个奇数个奇数,所取的三个数含有所取的三个数含有3 3个偶个偶数的取法有数的取法有_,_,只含有只含有1 1个偶数的取法个偶数的取法有有_,_,和为偶数的取法共有和为偶数的取法共有_再淘汰和小于再淘汰和小于10的偶数共的偶数共_符合条件的取法共有符合条件的取法共有_ 9 9013013015015017017023023025025027027041041045045043043+-9-9+有些排列组合问题有些排列组合问题,正面直接考虑比较复杂正面直接考虑比较复杂
18、,而它的反面往往比较简捷而它的反面往往比较简捷,可以先求出它的可以先求出它的反面反面,再从整体中淘汰再从整体中淘汰.十二十二.平均分组问题除法策略平均分组问题除法策略例12.6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解:分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现象,不妨记不妨记6本书为本书为ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 该分法记为该分法记为(AB,CD,EF),则则 中还有中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(
19、EF,CD,AB),(EF,AB,CD)共有共有 种取法种取法,而而 这些分法仅是这些分法仅是(AB,CD,EF)一种分法一种分法,故共故共 有有 种分法。种分法。平均分成的组平均分成的组,不管它们的顺序如何不管它们的顺序如何,都是一都是一种情况种情况,所以分组后要一定要除以所以分组后要一定要除以 (n为为均分的组数均分的组数)避免重复计数。避免重复计数。分为三组,一组分为三组,一组5人,一组人,一组4人,一组人,一组3人;人;分为甲、乙、丙三组,甲组分为甲、乙、丙三组,甲组5人,乙组人,乙组4人,人,丙组丙组3人;人;分为甲、乙、丙三组,一组分为甲、乙、丙三组,一组5人,一组人,一组4人,一
20、组人,一组3人;人;分为甲、乙、丙三组,每组分为甲、乙、丙三组,每组4人;人;分为三组,每组分为三组,每组4人。人。例例1:有有12 人。按照下列要求分配,求不同的人。按照下列要求分配,求不同的分法种数。分法种数。答案答案C125.C74.C33 C125.C74.C33 C125.C74.C33.A33C124.C84.C44分成三组,其中一组分成三组,其中一组2人,另外两组都是人,另外两组都是 5人。人。C122.C105.C55 A22 C124.C84.C44 A33 小结小结:练习练习1说明了非平均分配、平均分配以及部分平说明了非平均分配、平均分配以及部分平均分配问题。均分配问题。1
21、.非平均分配问题中,没有给出组名与给出非平均分配问题中,没有给出组名与给出组名是一样的,可以直接分步求;给出了组名组名是一样的,可以直接分步求;给出了组名而没指明哪组是几个,可以在没有给出组名而没指明哪组是几个,可以在没有给出组名(或给出组名但不指明各组多少个)种数的(或给出组名但不指明各组多少个)种数的基础上基础上乘以乘以组数的全排列数。组数的全排列数。2.平均分配问题中,给出组名的分步求;若没给出组名的,平均分配问题中,给出组名的分步求;若没给出组名的,一定要在给出组名的基础上一定要在给出组名的基础上除以除以组数的全排列数。组数的全排列数。3.部分平均分配问题中,先考虑不平均分配,剩下的就
22、是部分平均分配问题中,先考虑不平均分配,剩下的就是 平均分配。这样分配问题就解决了。平均分配。这样分配问题就解决了。结论结论:给出组名:给出组名(非平均中未指明非平均中未指明各组个数)的要在未给出组名的种各组个数)的要在未给出组名的种数的基础上,乘以组数的阶乘。数的基础上,乘以组数的阶乘。十三.合理分类与分步策略例例13.13.在一次演唱会上共在一次演唱会上共1010名演员名演员,其中其中8 8人能人能 能唱歌能唱歌,5,5人会跳舞人会跳舞,现要演出一个现要演出一个2 2人人 唱歌唱歌2 2人伴舞的节目人伴舞的节目,有多少选派方法有多少选派方法?解:10演员中有演员中有5人只会唱歌,人只会唱歌
23、,2人只会跳舞人只会跳舞 3人为全能演员。人为全能演员。以只会唱歌的以只会唱歌的5 5人是否人是否选上唱歌人员为标准进行研究选上唱歌人员为标准进行研究 只会唱只会唱的的5 5人中没有人选上唱歌人员共有人中没有人选上唱歌人员共有_种种,只会唱的只会唱的5 5人中只有人中只有1 1人选上唱歌人人选上唱歌人员员_种种,只会唱的只会唱的5 5人中只有人中只有2 2人人选上唱歌人员有选上唱歌人员有_种,由分类计数种,由分类计数原理共有原理共有_种。种。+本题还有如下分类标准:本题还有如下分类标准:*以以3 3个全能演员是否选上唱歌人员为标准个全能演员是否选上唱歌人员为标准*以以3 3个全能演员是否选上跳
24、舞人员为标准个全能演员是否选上跳舞人员为标准*以只会跳舞的以只会跳舞的2 2人是否选上跳舞人员为标准人是否选上跳舞人员为标准都可经得到正确结果都可经得到正确结果解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。十四十四.构造模型策略构造模型策略例例14.14.马路上有编号为马路上有编号为1,2,3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的的 九只路灯九只路灯,现要关掉其中的现要关掉其中的3 3盏盏,但不能关但不能关 掉相邻的掉相邻的2 2盏或盏或3 3盏盏,也不能关掉两
25、端的也不能关掉两端的2 2 盏盏,求满足条件的关灯方法有多少种?求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在解:把此问题当作一个排队模型在6 6盏盏 亮灯的亮灯的5 5个空隙中插入个空隙中插入3 3个不亮的灯个不亮的灯 有有_ _ 种种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决十五十五.实际操作穷举策略实际操作穷举策略例例15.15.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五个球和编号1,2,1,2,3,4,53,4,5的五个盒子的五个盒子,现将现将5 5个球投入这五个球投入这五个盒子内
26、个盒子内,要求每个盒子放一个球,并恰好有要求每个盒子放一个球,并恰好有两个球的编号与盒子的编号相同两个球的编号与盒子的编号相同,有多少投法有多少投法 解:从从5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应,利用实际操作法,如果剩下操作法,如果剩下3,4,5号球号球,3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法3 3号盒号盒4 4号盒号盒5 5号盒号盒345十五十五.实际操作穷举策略实际操作穷举策略例例15.15.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五
27、个球和编号1,2,1,2,3,4,53,4,5的五个盒子的五个盒子,现将现将5 5个球投入这五个球投入这五个盒子内个盒子内,要求每个盒子放一个球,并且恰好要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同有两个球的编号与盒子的编号相同,.,.有多少有多少投法投法 解:从从5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应,利用实际操作法,如果剩下操作法,如果剩下3,4,5号球号球,3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法,同理同理3号球装号球装5号盒时号盒时,4,5号球有
28、号球有也也只有只有1种装法种装法,由分步计数原理有由分步计数原理有2 种种 对于条件比较复杂的排列组合问题,不易用对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果图会收到意想不到的结果十六十六.分解与合成策略分解与合成策略例例16.3003016.30030能被多少个不同的偶数整除能被多少个不同的偶数整除分析:先把分析:先把3003030030分解成质因数的乘积形式分解成质因数的乘积形式 30030=235 7 1113 30030=235 7 1113依题依题 意可知偶因数必先取意可知偶因数必先取2,2,
29、再从其余再从其余5 5个个 因数中任取若干个组成乘积,所有因数中任取若干个组成乘积,所有 的偶因数为:的偶因数为:十七十七.化归策略化归策略例例18.2518.25人排成人排成5555方队方队,现从中选现从中选3 3人人,要要 求求3 3人不在同一行也不在同一列人不在同一行也不在同一列,不同的不同的 选法有多少种?选法有多少种?解:将这个问题退化成将这个问题退化成9 9人排成人排成3333方队方队,现现从中选从中选3 3人人,要求要求3 3人不在同一行也不在人不在同一行也不在同一列同一列,有多少选法有多少选法.这样每行必有这样每行必有1 1人人从其中的一行中选取从其中的一行中选取1 1人后人后
30、,把这人所在把这人所在的行列都划掉,的行列都划掉,从从5555方队中选取方队中选取3 3行行3 3列有列有_选法选法所以从所以从5555方队选不在同一行也不在同方队选不在同一行也不在同一列的一列的3 3人有人有_选法。选法。处理复杂的排列组合问题时可以把一个问题处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步的问题的解决找到解题方法,从而进下一步解决原来的问题解决原来的问题如此继续下去如此继续下去.从从3333方队中选方队中选3 3人的方法人的方法有有_种。再从种。再从5555方队选出方队选
31、出3333方队便可解决问题方队便可解决问题210210210210十九、爬格问题210210210210十九、爬格问题如图,节日花坛中有如图,节日花坛中有5个区域,现有个区域,现有4种不同颜色的花卉可供选择,种不同颜色的花卉可供选择,要求相同颜色的花不能相邻栽种,则符合条件的种植方案有要求相同颜色的花不能相邻栽种,则符合条件的种植方案有_种种.【详解】如图,假设5个区域分别为1,2,3,4,5,分2种情况讨论:当选用3种颜色的花卉时,2,4同色且3,5同色,共有种植方案(种),当4种不同颜色的花卉全选时,即2,4或3,5用同一种颜色,共有种植方案(种),则不同的种植方案共有(种).故答案为:7
32、272二十、染色问题【方法技巧】涂色问题的常用方法有:(涂色问题的常用方法有:(1)可根据)可根据共用了多少种颜色分类讨论共用了多少种颜色分类讨论;(2)根据相对区域是)根据相对区域是否同色分类讨论否同色分类讨论;(3)将空间问题平面化,转化成)将空间问题平面化,转化成平面区域涂色问题。平面区域涂色问题。二十、染色问题小结 本节课,我们对有关排列组合的几种常见的本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易难发现排
33、列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件掌握。根据它们的条件,我们就可以选取不同我们就可以选取不同的技巧来解决问题的技巧来解决问题.对于一些比较复杂的问题对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。后续学习打下坚实的基础。二项式定理k1相等2n2n1考向1求二项展开式中的特定项(或
34、系数)A60B60C240D240答案答案 解析解析 考点一二项展开式的通项及其应用(多考向探究)求二项展开式中特定项(或系数)的步骤第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出k;第三步,把k代入通项中,即可求出Tk1,有时还需要先求n,再求k,才能求出Tk1或者其他量考向2已知两个因式之积求其特定项(或系数)(1)(2023湖南益阳质量检测)若(12x)(12x)5a0a1xa2x2a6x6,xR,则a2的值为()A20B20C40D60答案答案 解析解析 求解形如(ab)n(cd)m的展开式的特定项(或系数)问题的思路
35、(1)若n,m中一个比较小,可考虑把它展开,如(ab)2(cd)m(a22abb2)(cd)m,然后展开分别求解(2)观察(ab)n(cd)m是否可以合并,如(1x)5(1x)7(1x)(1x)5(1x)2(1x2)5(1x)2.(3)利用(ab)n,(cd)m的通项,综合分析解决问题考向3已知三项式求其特定项(或系数)A61B59C57D55答案答案 解析解析 求三项展开式中某些特定项(或系数)的策略(1)通过变形先把三项式转化为二项式,再用二项式定理求解(2)两次利用二项式定理的通项求解(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看
36、有多少种方法从这几个因式中取因式中的量A16B32C1D32解析因为二项式系数的和是16,所以2n16,解得n4.令x1得展开式中各项系数的和为(2)416.故选A.答案答案 解析解析 考点二二项式系数与各项的系数和问题(2)(2022北京高考)若(2x1)4a4x4a3x3a2x2a1xa0,则a0a2a4()A40B41C40D41答案答案 解析解析(1)“赋值法”普遍适用于恒等式,是一种重要的方法对形如(axb)n,(ax2bxc)m(a,bR)的式子求其展开式的各项系数之和,常用赋值法,只需令x1即可;对形如(axby)n(a,bR)的式子求其展开式的各项系数之和,只需令xy1即可4.
37、在二项式(12x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A960B960C1120D1680答案答案 解析解析 考向1二项式系数的最值问题已知m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b,且13a7b,则m的值为()A4B5C6D7答案答案 解析解析 考点三二项展开式中的系数最值问题(多考向探究)二项式系数最大项的确定方法答案1120答案答案 解析解析 考向2项的系数的最值问题(2023江苏南京模拟)若(2ax)n(a0)的展开式中各项的二项式系数之和为512,且第6项的系数最大,则a的取值范围为()答案答案 解析解析 二项展开式系数最大项的求法考点四二项式定理的综合应用 (1)(2023湖北荆州中学模拟)已知m0,且152022m恰能被14整除,则m的取值可以是()A1B12C7D27答案答案 解析解析(2)(2023广东佛山模拟)1.026的近似值(精确到0.01)为()A1.12B1.13C1.14D1.20答案答案 解析解析 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1x)n1nx.