备课素材:受损DNA的修复 高一下学期生物人教版必修2.docx

上传人:ge****by 文档编号:92706031 上传时间:2023-06-11 格式:DOCX 页数:6 大小:118.57KB
返回 下载 相关 举报
备课素材:受损DNA的修复 高一下学期生物人教版必修2.docx_第1页
第1页 / 共6页
备课素材:受损DNA的修复 高一下学期生物人教版必修2.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《备课素材:受损DNA的修复 高一下学期生物人教版必修2.docx》由会员分享,可在线阅读,更多相关《备课素材:受损DNA的修复 高一下学期生物人教版必修2.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、受损DNA的修复先看一道试题:1949年A凯尔纳偶然发现灰色链丝菌等微生物经紫外线(UV)照射后立即暴露在可见光下可减少死亡。实践证明这是微生物固有的DNA拉伤修复功能,这一修复功能称为光复活。1958年R.L.希尔证明即使不经可见光照射,大肠杆菌也能修复它的由紫外线所造成的DNA损伤,这种修复功能称为暗复活。下列有关叙述错误的是()A辐射会刺激细胞产生自由基,自由基攻击DNA是产生DNA损伤的原因之一B光复活可以解释自然界中灰色链丝菌等微生物基因突变率低的原因C上述发现有助于探究细胞衰老的原因D修复DNA损伤部位只需要限制性核酸内切酶和DNA聚合酶答案:D解析:自由基学说认为,辐射会刺激细胞

2、产生自由基,自由基攻击DNA分子是产生DNA损伤的原因之一,也是导致细胞衰老的原因,A正确;光复活可使突变的DNA得到修复,这可以解释自然界中灰色链丝菌等微生物基因突变率低的原因,B正确;上述研究发现光修复和暗修复可延缓细胞的衰老,这也有助于探究细胞衰老的原因,C正确;修复DNA损伤部位可能还需要DNA连接酶,D错误。这道试题涉及到受损DNA的修复,教材中没有提到。那么,受损的DNA是如何修复的?DNA损伤修复(Repair of DNA Damage)是指在多种酶的作用下,生物细胞内的DNA分子受到损伤以后恢复结构的现象。DNA分子的损伤类型有多种。UV照射后DNA分子上的两个相邻的胸腺嘧啶

3、(T)或胞嘧啶(C)之间可以共价键连结形成环丁酰环,这种环式结构称为二聚体。胸腺嘧啶二聚体的形成是 UV对DNA分子的主要损伤方式。射线、射线照射细胞后,由细胞内的水所产生的自由基既可使DNA分子双链间氢键断裂,也可使它的单链或双链断裂。化学物中的博莱霉素、甲基磺酸甲烷等烷化剂也能造成链的断裂。丝裂霉素C可造成DNA分子单链间的交联,这种情况常发生在两个单链的对角的鸟嘌呤之间。链的交联也往往带来DNA分子的断裂。DNA 分子还可以发生个别碱基或核苷酸的变化。例如碱基结构类似物5-溴尿嘧啶等可以取代个别碱基,亚硝酸能引起碱基的氧化脱氨反应,原黄素(普鲁黄)等吖啶类染料和甲基氨基偶氮苯等芳香胺致癌

4、物可以造成个别核苷酸对的增加或减少而引起移码突变1949年A.凯尔纳偶然发现灰色链丝菌等微生物经紫外线(UV)照射后如果立即暴露在可见光下则可减少死亡。此后在大量的微生物实验中都发现了这种现象,并证明这是许多种微生物固有的DNA损伤修复功能,并把这一修复功能称为光复活。1958年R.L.希尔证明即使不经可见光的照射,大肠杆菌也能修复它的由紫外线所造成的DNA损伤,而后又证明其他微生物也有这种功能,当时就把这种修复功能称为暗复活或暗修复。此后发现暗修复普遍地存在于原核生物、低等真核生物、高等真核生物的两栖类乃至哺乳动物中,并证实暗修复包括切除修复和复制后修复两种。1968年美国学者J.E.克利弗

5、首先发现人类中的常染色体隐性遗传的光化癌变疾病着色性干皮病(XP)是由基因突变造成的DNA损伤切除修复功能的缺陷引起的。这一发现为恶性肿瘤的发生机理提供了一个重要的分子生物学证据,也使DNA损伤修复的研究进入了医学领域。DNA损伤修复的方式在致有:1光复活:又称光逆转。这是在可见光(波长30006000埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使环丁酰环打开而完成的修复过程 (图2)。光复活酶已在细菌、酵母菌、原生动物、藻类、蛙、鸟类、哺乳动物中的有袋类和高等哺乳类及人类的淋巴细胞和皮肤成纤维细胞中发现。这种修复功能虽然普遍存在,但主要是低等生物的一种修复方式,随着生物的进化,

6、它所起的作用也随之削弱。光复活过程并不是PR酶吸收可见光,而是PR酶先与DNA链上的胸腺嘧啶二聚体结合成复合物,这种复合物以某种方式吸收可见光,并利用光能切断胸腺嘧啶二聚体间的C-C键,胸腺嘧啶二聚体变成单体,PR酶就从DNA上解离下来。2切除修复:又称切补修复。最初在大肠杆菌中发现,包括一系列复杂的酶促DNA修补复制过程,主要有以下几个阶段:核酸内切酶识别DNA损伤部位,并在5端作一切口,再在外切酶的作用下从5端到3端方向切除损伤;然后在DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二

7、酯链相接而完成修复过程(图3)。切除修复并不限于修复嘧啶二聚体,也可以修复化学物等引起的其他类型的损伤。从切除的对象来看,切除修复又可以分为碱基切除修复和核苷酸切除修复两类。碱基切除修复是先由糖基酶识别和去除损伤的碱基,在DNA单链上形成无嘌呤或无嘧啶的空位,这种空缺的碱基位置可以通过两个途径来填补:一是在插入酶的作用下以正确的碱基插入到空缺的位置上;二是在核酸内切酶的催化下在空位的5端切开DNA链,从而触发上述一系列切除修复过程。对于各种不同类型的碱基损伤都有特异的糖基酶加以识别。不同的核酸内切酶对于不同类型损伤的识别也具有相对的特异性。切除修复功能广泛存在于原核生物和真核生物中,也是人类的

8、主要修复方式,啮齿动物 (如仓鼠、小鼠)先天缺乏切除修复的功能。1978 年美国学者 J.L.马克斯发现真核生物与原核生物间由于染色质结构不同,切除修复的过程也不相同。真核生物的DNA分子不象原核生物那样是裸露的,而是缠绕在组蛋白上形成串珠状的核小体结构。真核生物中的嘧啶二聚体的切除分两个阶段:快速切除期,约需23小时,主要切除未与组蛋白结合的DNA部分的损伤;缓慢切除期,至少要持续35小时而且需要有某种控制因子去识别这种损伤,使DNA受损部分从核小体中暴露出来,然后经过一系列步骤完成切除修复,然后修复的DNA分子再缠绕在组蛋白上重新形成核小体。3重组修复:重组修复从DNA分子的半保留复制开始

9、,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成修复过程。重组修复也是啮齿动物主要的修复方式。重组修复与切除修复的最大区别在于前者不须立即从亲代的DNA分子中去除受损伤的部分,却能保证DNA复制继续进行。原母链中遗留的损伤部分,可以在下一个细胞周期中再以切除修复方式去完成修复。重组修复的主要步骤有:1)复制含有TT或其他结构损伤的DNA仍然可以正常

10、的进行复制,但当复制到损伤部位时,子代DNA链中与损伤部位相对应的位置出现切口,新合成的子链比未损伤的DNA链要短。2)重组完整的母链与有缺口的子链重组,缺口由母链来的核苷酸片段弥补。3)再合成重组后母链中的缺口通过DNA多聚酶的作用合成核酸片段,然后由连接酶使新片段与旧链连接,至此重组修复完成。重组修复并没有从亲代DNA中去除二聚体。当第二次复制时,留在母链中的二聚体仍使复制不能正常进行,复制经过损伤部位时所产生的切口,仍旧要用同样的重组过程来弥补,随着DNA复制的继续,若干代以后,虽然二聚体始终没有除去,但损伤的DNA链逐渐“稀释”,最后无损于正常生理功能,损伤也就得到了修复2。4SOS修

11、复系统:是SOS反应的一种功能。SOS反应是DNA受到损伤或脱氧核糖核酸的复制受阻时的一种诱导反应。在大肠杆菌中,这种反应由recA-lexA系统调控。正常情况下处于不活动状态。当有诱导信号如DNA损伤或复制受阻形成暴露的单链时,recA蛋白的蛋白酶活力就会被激活,分解阻遏物lexA蛋白,使SOS反应有关的基因去阻遏而先后开放,产生一系列细胞效应。引起SOS反应的信号消除后,recA蛋白的蛋白酶活力丧失,lexA蛋白又重新发挥阻遏作用。SOS 反应发生时, 可造成损伤修复功能的增强。如uvrA、uvrB、uvrC、uvrD、ssb、recA、recN和ruv基因发达从而增强切除修复、复制后修复

12、和链断裂修复。而recA和umuD.C则参与一种机制不清的易错修复,使细胞存活率增加,突变率也增加。除修复作用外,SOS反应还可造成细胞分裂受阻、溶原性噬菌体释放和DNA复制形式的改变。后者指DNA聚合酶I*的形成,使DNA复制的准确性降低并可通过损伤部位。此时,DNA复制的起始也无需新合成蛋白。在真核细胞中,虽然还不清楚具体过程,但肯定存在可诱导的易错修复。酵母RAD6系统就是一种易错修复系统。在哺乳类细胞中,DNA损伤可诱导细胞内病毒的释放、病毒转化作用的加强、染色体重组增强和细胞纤溶酶激活物的形成等。并且还发现了和大肠杆菌相似的-复活效应和-诱变效应。由于这种反应可增强突变、染色体重排和

13、病毒的活动,以及对 DNA复制形式的影响,可能与癌基因激活和肿瘤形成有直接的关系。因而,SOS反应可作为检测药物致癌性的指标,而抑制SOS反应的药物则可减少突变和癌变。这类物质被称之为抗变剂。1977年美国学者L.萨姆森等在大肠杆菌中发现的不同于SOS修复的又一种诱导反应,它可以修复鸟嘌呤碱基的甲基化。如先以每毫升培养基 1微克的诱变剂N-甲基-N硝基亚硝基胍(MNNG)培养大肠杆菌两小时,就能使大肠杆菌对MNNG浓度高几百倍的环境产生抗性。这是由于 MNNG引起的DNA链上的鸟嘌呤甲基化诱导合成甲基受体蛋白,这种甲基受体蛋白分子的半胱氨酸能和甲基基团结合形成S-甲基半胱氨酸,从而使甲基化的鸟

14、嘌呤碱基得以修复。例、2021年10月4日英国自然生物技术杂志在线发表的一项最新研究显示,由中国科研人员开发的新型光遗传学工具,让一束光用于治疗肿瘤、代谢疾病等多种疾病成为可能。紫外线可使DNA分子同一条链上相邻的嘧啶碱基形成二聚体,该二聚体不能和嘌呤碱基进行互补配对。在大肠杆菌等原核生物中存在的光复活酶,可与该二聚体部位特异性结合,在可见光下,打开该二聚体,使其碱基恢复到正常状态。下列说法错误的是()A嘧啶碱基形成二聚体后,会影响DNA的复制和基因的转录B紫外线的长时间照射可能会使生物体产生变异C嘧啶碱基形成二聚体后,DNA双链的稳定性加强D可见光可能为二聚体的打开供能答案:C解析:紫外线可使DNA分子同一条链上相邻的嘧啶碱基形成二聚体,该二聚体不能和嘌呤碱基进行互补配对。因此嘧啶碱基形成二聚体后,会影响DNA中遗传信息的传递,即影响DNA的复制和基因的转录,A正确;紫外线能诱发基因突变,因此紫外线的长时间照射可能会使生物体产生变异,B正确;嘧啶碱基形成二聚体后,不能和嘌呤碱基进行互补配对,因此DNA双链的稳定性减弱,C错误;在大肠杆菌等原核生物中存在的光复活酶可与该二聚体部位特异性结合,在可见光下,打开该二聚体,使其碱基恢复到正常状态。据此可推测可见光可能为二聚体的打开供能,D正确。学科网(北京)股份有限公司

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁