高一必修一数学集合教案3篇.docx

上传人:1107088****qq.com 文档编号:92634190 上传时间:2023-06-09 格式:DOCX 页数:8 大小:41.42KB
返回 下载 相关 举报
高一必修一数学集合教案3篇.docx_第1页
第1页 / 共8页
高一必修一数学集合教案3篇.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《高一必修一数学集合教案3篇.docx》由会员分享,可在线阅读,更多相关《高一必修一数学集合教案3篇.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一必修一数学集合教案3篇高一必修一数学集合教案篇1教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的属于和不属于关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念-集合(宣布课题),即是一些研究对象的总体。阅读课本P2-P3内容二、新课教

2、学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)中国的小河流;(3)非负奇数;(4)方程的解;(5)某校2023级新生;(6)血压很高的人;(7)的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。对学生的解答予以讨论、点评,进而讲解下面的问题。4.关于集合的元素的特征(1)确定性:设A

3、是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:给定一个集合与集合里面元素的顺序无关。(4)集合相等:构成两个集合的元素完全一样。5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belongto)A,记作:aA(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA例如,我们A表示120以内的所有质数组成的集合,则有3A4A,等等。6.集合与元素的字母表示:集合通常用大写

4、的拉丁字母A,B,C.表示,集合的元素用小写的拉丁字母a,b,c,.表示。7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N_或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用或符号填空:(1)8N;(2)0N;(3)-3Z;(4)Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。例2.已知集合P的元素为,若3P且-1P,求实数m的值。(三)课堂练习:课本P5练习1;归纳小结:本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。作业布置:1.习题1.1,

5、第1-2题;2.预习集合的表示方法。高一必修一数学集合教案篇2一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。2、教学目标及确立的依据:教学目标:(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。(2)能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。(3)德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互

6、制约的辩证唯物主义观点。教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。教学难点:映射的概念,函数近代概念,及函数符号的理解。重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋

7、势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。三、教学方法和学法教学方法:讲授为主,自主预习为辅。依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生

8、的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。学法:四、教学程序一、课程导入通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?二.新课讲授:(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:ab,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集

9、合a、b和a到b的对应法则f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有确定的元素与之对应。(2)巩固练习课本52页第八题。此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:ab记为

10、y=f(_),其中自变量_的取值范围a叫做函数的定义域,与_的值相对应的y(或f(_)值叫做函数值,函数值的集合f(_):_a叫做函数的值域。并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。再以让判断的方式给出以下关于函数近代定义的注意事项:2.函数是非空数集到非空数集的映射。3.f表示对应关系,在不同的函数中f的具体含义不一样。4.f(_)是一个符号,不表示f与_的乘积,而表示_经过f作用后的结果。5.集合a中的数的任意性,集合b中数的性。6.“f:ab”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c

11、b)。三.讲解例题例1.问y=1(_a)是不是函数?解:y=1可以化为y=0_+1画图可以知道从_的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。注:引导从集合,映射的观点认识函数的定义。四.课时小结:1.映射的定义。2.函数的近代定义。3.函数的三要素及符号的正确理解和应用。4.函数近代定义的五大注意点。五.课后作业及板书设计书本p51习题2.1的1、2写在书上3、4、5上交。预习函数三要素的定义域,并能求简单函数的定义域。函数(一)一、映射:2.函数近代定义:例题练习二、函数的定义注151.函数传统定义三、作业:高一必修一数学集合教案篇3教学目标1.掌

12、握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

13、教学建议教材分析(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁