《高中数学知识点教案七篇(范文推荐).docx》由会员分享,可在线阅读,更多相关《高中数学知识点教案七篇(范文推荐).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学知识点教案七篇(范文推荐)高中数学知识点教案七篇一、教材分析“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察猜想证明应用”这一思维方法,养成大
2、胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。三、教学目标1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。过程与方法:学生参与解题方案的探索,尝试应用观察猜想证明应用”等思想方法
3、,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。2、教学重点、难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。教学难点:正弦定理证明及应用。四、教学方法与手段为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问
4、题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。五、教学过程为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:(一)创设情景,揭示课题问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?1671年两个法国天文学家首次测出了地月之间的距离大约为385400km,你知道他们当时是怎样测出这
5、个距离的吗?问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题解三角形)设计说明引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。(二)特殊入手,发现规律问题3:在初中,我们已经学习了锐角三角函数和解直角三角形这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在RtABC中sinA=,sinB=,sinC=,由此,你能把这个直角三角形中的所有的边和角用一个表达式表
6、示出来吗?引导启发学生发现特殊情形下的正弦定理。(三)类比归纳,严格证明问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的RtABC不小心写成了锐角ABC,其它没有变,你说这个结论还成立吗?设计说明此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内
7、容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:引导学生发现正弦定理的内容,探索证明正弦定理的方法;简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。(2)能力目标:通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。在利用正弦定理来解三角形的过程中,逐
8、步培养应用数学知识来解决社会实际问题的能力。(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。3.教学的重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。2.学法指
9、导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。学法指导:指导学生掌握“观察猜想证明应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。3.教学手段利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。下面我讲解如何运用上述教学方法和手段开展教学过程三、教学过程设计教学流程:引出课题引出新知归纳方法巩固新知布置作业四
10、、总结分析:现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:在学生已有知识结构和新性质概念间寻找“最近发展区”.引导学生通过同化,顺应掌握新概念。设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程”的新天地。我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合学用结合”原则。希望对学生的思维品质的培养数学思想的建立心理品质的优化起到良好的作用.设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中
11、间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。谢谢!教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由_红高粱主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察-发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。例1:观察下面数列是否是
12、等差数列:.二、等差数列通项公式:已知等差数列an的首项是a1,公差是d。则由定义可得:a2-a1=da3-a2=da4-a3=dan-an-1=d即可得:an=a1+(n-1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。分析:知道a1,d,求an。代入通项公式解:a1=3,d=2an=a1+(n-1)d=3+(n-1)2=2n+1例3求等差数列10,8,6,4的第20项。分析:根据a1=10,d=-2,先求出通项公式an,再求出a20解:a1=10,d=8-10=-2,n=20由an=a1+(n-1)d得a20=a1+(n-1)d=10+(20-1)(-2)=-28例4:在
13、等差数列an中,已知a6=12,a18=36,求通项an。分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。解:由题意可得a1+5d=12a1+17d=36d=2a1=2an=2+(n-1)2=2n练习1.判断下列数列是否为等差数列:23,25,26,27,28,29,30;0,0,0,0,0,0,52,50,48,46,44,42,40,35;-1,-8,-15,-22,-29;答案:不是是不是是等差数列an的前三项依次为a-6,-3a-5,-10a-1,则a等于()A.1B.-
14、1C.-1/3D.5/11提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)3.在数列an中a1=1,an=an+1+4,则a10=.提示:d=an+1-an=-4教师继续提出问题已知数列an前n项和为作业P116习题3.21,2一、说教学内容分析本节课是高一数学第五章三角比第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理
15、教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。二、说学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。三、说设计思想:培养学生学会学习、学会探究是全面发展学
16、生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。四、说教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问
17、题转化为代数问题的优越性,感受数学论证的严谨性、2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。五、说教学重点与难点教学重点:正弦定理的探索与证明;正弦定理的基本应用。教学难点:正弦定理的探索与证明。突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。六、说复习引入:1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角
18、关系准确量化?2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?结论:证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。正弦定理说教学反思本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计、一个是问题的引入,一个是定理的证明、通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法、具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系正弦定理、因此,做好“正弦定理”的教学既能复习巩固旧知
19、识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段、利用几何画板探究比值的值,由动到静,取得了很好的效果,加深了学生的印象、3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避
20、免此类问题,争取更大的进步。1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌握圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的理解;3、增强学生用数学的意识。(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。2、教学重点、难点(1)教学重点:圆的标准方程的求法及其应用。(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程选择恰当的坐标系解决与圆有关的实际问题
21、。3、教学过程(一)创设情境(启迪思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?引导:画图建系学生活动:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y0)将x=2。7代入,得即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心
22、在,半径为时又如何呢?学生活动:探究圆的方程。II.灵活应用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。教师引导由问题三知:圆心与半径可以确定圆。2、求过点,圆心在直线上且与轴相切的圆的方程。教师引导应用待定系数法寻找圆心和半径。3、已知圆的方程为,求过圆上一点的切线方程。学生活动探究方法教师预设方法一:待定系数法(利用几何关系求斜率垂直)方法二:待定系数法(利用代数关系求斜率联立方程)方法三:轨迹法(利用勾股定理列关系式)多媒体课件演示方法四:轨迹法(利用向量垂直列关系式)4、你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是:III.实际应用(回归自
23、然)问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。多媒体课件演示创设实际问题情境(四)反馈训练(形成方法)问题六:1、求以C(-1,-5)为圆心,并且和y轴相切的圆的方程。2、已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程。3、求过点,且圆心在直线上的圆的标准方程。4、求圆x2+y2=13过点P(2,3)的切线方程。5、已知圆的方程为,求过点的切线方程。(五)小结反思(拓展引申)1、课堂小结:(1)知识性小结:圆心为C(a,b),半径为r的圆的标准方程为:当圆心在原点时,圆
24、的标准方程为:已知圆的方程是,经过圆上一点的切线的方程是:(2)方法性小结:求圆的方程的方法:I。找出圆心和半径;II。待定系数法求解应用问题的一般方法2、分层作业:(A)巩固型作业:课本P8182:(习题7。6)1、2、4(B)思维拓展型作业:试推导过圆上一点的切线方程。3、激发新疑:问题七:1、把圆的标准方程展开后是什么形式?2、方程:的曲线是什么图形?设计说明圆是学生比较熟悉的曲线。初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点就放在了用解析法研究它的方程和圆的标准方程的一些应用上。首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程
25、,然后,利用圆的标准方程由潜入深的解决问题,并通过最终在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、我的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指
26、导思想,应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时提锻炼了思维、提高了能力、培养了兴趣、增强了信心。一、课程性质与任务数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理
27、技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为3264学时。3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求(一)本大纲教学要求用语的表述1.认知要求(分为
28、三个层次)了解:初步知道知识的含义及其简单应用。理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或
29、根据条件画出图形。分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)第2单元不等式(8学时)第6单元数列(10学时)第7单元平面向量(矢量)(10学时)第8单元直线和圆的.方程(18学时)第10单元概率与统计初步(16学时)2.职业模块第2单元坐标变换与参数方程(12学时)一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。【难点】二元二次方程与圆的一般方程及标准圆方程的关系。三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。