数学圆锥曲线文档.pdf

上传人:蓝**** 文档编号:92211427 上传时间:2023-05-31 格式:PDF 页数:4 大小:314.13KB
返回 下载 相关 举报
数学圆锥曲线文档.pdf_第1页
第1页 / 共4页
数学圆锥曲线文档.pdf_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《数学圆锥曲线文档.pdf》由会员分享,可在线阅读,更多相关《数学圆锥曲线文档.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学圆锥曲线选知识点总结高中数学圆锥曲线选知识点总结一、椭圆一、椭圆1、定义:定义:平面内与两个定点F1,F2的距离之和等于常数(大于F)的点1F2的轨迹称为椭圆椭圆即:|MF1|MF2|2a,(2a|F1F2|)。这两个定点称为椭圆的焦点焦点,两焦点的距离称为椭圆的焦距焦距2、椭圆的几何性质椭圆的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程范围x2y21a b 0a2b2y2x21a b 0a2b2a x a且b y bb x b且a y a顶点1a,0、2a,010,a、20,a10,b、20,b1b,0、2b,0轴长焦点焦距对称性离心率短轴的长2b长轴的长 2aF1c,0

2、、F2c,0F10,c、F20,cF1F2 2cc2 a2b2关于x轴、y轴、原点对称cb2e 120 e 1e 越小,椭圆越圆;e 越大,椭圆越扁aa-1-二、双曲线二、双曲线1、定义:定义:平面内与两个定点F1,F2的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线双曲线即:|MF1|MF2|2a,(2a|F1F2|)。F1F2这两个定点称为双曲线的焦点双曲线的焦点,两焦点的距离称为双曲线的焦距双曲线的焦距2、双曲线的几何性质双曲线的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程范围顶点轴长焦点焦距对称性离心率渐近线方程x2y21a 0,b 0a2b2y2x21a 0,b 0

3、a2b2x a或x a,yRy a或y a,xR1a,0、2a,010,a、20,a虚轴的长2b实轴的长 2aF1c,0、F2c,0F10,c、F20,cF1F2 2cc2 a2b2关于x轴、y轴对称,关于原点中心对称cb2e 12e 1,e越大,双曲线的开口越阔aay bxay axb5、实轴和虚轴等长的双曲线称为等轴双曲线等轴双曲线三、抛物线三、抛物线-2-1、定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛抛物线物线定点F称为抛物线的焦点抛物线的焦点,定直线l称为抛物线的准线准线2、抛物线的几何性质抛物线的几何性质:y2 2 pxy2 2 pxx2 2 pyx2 2 py

4、标准方程范围顶点对称轴p 0 x 0p 0 x 0p 0y 0p 0y 00,0 x轴y轴p F0,2p F0,2焦点 pF,02pF,02准线方程离心率焦半径x p2x p2y p2y p2e1,p越大,抛物线的开口越大p2pppMF y0MF y0222M(x0,y0)通径焦点弦长公式MF x0MF x0过抛物线的焦点且垂直于对称轴的弦称为通径:HH 2pAB x1 x2 pAB y1 y2 p3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”通径”,即 2p4、关于抛物线焦点弦的几个结论:B(x2,y2),直线AB设AB为过抛物线y2 2 px(p 0)焦点的

5、弦,A(x1,y1)、的倾斜角为,则-3-p22p,y1y2 p2;AB x1x2;24sin 以AB为直径的圆与准线相切;焦点F对A、B在准线上射影的张角为2;112.|FA|FB|P四、直线与圆锥曲线的位置关系四、直线与圆锥曲线的位置关系几何角度(主要适用于直线与圆的位置关系)直线与圆锥曲线的位置关系直线与圆锥曲线位置关系)代数角度(适用于所有1.直线与圆锥曲线利用一般弦长公式(容易)直线与圆锥曲线相交的弦长问题繁琐)利用两点间距离公式(2.直线与圆锥曲线的位置关系:.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重

6、合时,直线与抛物线也只有一个交点。.从代数角度看:设直线 L 的方程与圆锥曲线的方程联立得到ax2 bx c 0。.若a=0,当圆锥曲线是双曲线时,直线L 与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线 L 与抛物线的对称轴平行或重合。.若a 0,设 b24ac。a.0时,直线和圆锥曲线相交于不同两点,相交。b.0时,直线和圆锥曲线相切于一点,相切。c.0时,直线和圆锥曲线没有公共点,相离。五、弦长问题:五、弦长问题:根据根与系数的关系,进行整体代入。即当直线斜率为k与圆锥曲线交于点直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,Ax1,y1,Bx2,y2时,则AB=1 k2x1 x2=1 k2=1x1 x224x1x2y1 y224y1y2-4-111=y y2k21k2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁