细胞生物学英文ppt课件:细胞质膜与细胞表面.ppt

上传人:飞****2 文档编号:92177136 上传时间:2023-05-31 格式:PPT 页数:119 大小:5.28MB
返回 下载 相关 举报
细胞生物学英文ppt课件:细胞质膜与细胞表面.ppt_第1页
第1页 / 共119页
细胞生物学英文ppt课件:细胞质膜与细胞表面.ppt_第2页
第2页 / 共119页
点击查看更多>>
资源描述

《细胞生物学英文ppt课件:细胞质膜与细胞表面.ppt》由会员分享,可在线阅读,更多相关《细胞生物学英文ppt课件:细胞质膜与细胞表面.ppt(119页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Chapter 4:Cell Membrane and Cell Surface I.Cell Membrane II.Cell Junctions III.Cell Adhesion IV.Extracellular Matrix I.Biomembranes:Their Structure,Chemistry and Functions Learning objectives:1.A brief history of studies on the structrure of the plasma membrane2.Model of membrane structure:an experi

2、mental perspective3.The chemical composition of membranes4.Characteristics of biomembrane5.An overview of the functions of biomembranes 1.1.A brief history of studies on the structrure of the plasmic membraneA.Conception:Plasma membrane(cell membrane),Intracellular membrane,Biomembrane.B.The history

3、 of studyOverton(1890s):Lipid nature of PM;J.D.Robertson(1959):TheTEMshowing:thetrilaminarappearanceofPM;Unit membrane model;S.J.Singer and G.Nicolson(1972):fluid-mosaicmodel;K.Simonsetal(1997):lipidraftsmodel;FunctionalraftsinCellmembranes.Nature387:569-572 2.Singer and Nicolsons Model of membrane

4、structure:The fluid-mosaic model is the“central dogma”of membrane biology.A.The core lipid bilayer exists in a fluid state,capable of dynamic movement.B.Membrane proteins form a mosaic of particles penetrating the lipid to varying degrees.The Fluid Mosaic Model,proposed in 1972 by Singer and Nicolso

5、n,had two key features,both implied in its name.3.The chemical composition of membranesA.Membrane Lipids:The Fluid Part of the Model Phospholipids:Phosphoglycerideandsphingolipids Glycolipids Sterols(isonlyfoundinanimals)vMembrane lipids are amphipathic.vThere are three major classes of lipids:Figur

6、e 10-2.The parts of a phospholipid molecule.Phosphatidylcholine,representedschematically(A),informula(B),asaspace-fillingmodel(C),andasasymbol(D).Thekinkduetothecis-doublebondisexaggeratedinthesedrawingsforemphasis.Figure 10-3.A lipid micelle and a lipid bilayer seen in cross-section.Lipidmoleculesf

7、ormsuchstructuresspontaneouslyinwater.Theshapeofthelipidmoleculedetermineswhichofthesestructuresisformed.Wedge-shapedlipidmolecules(above)formmicelles,whereascylinder-shapedphospholipidmolecules(below)formbilayers.Figure 10-4.Liposomes.(A)Anelectronmicrographofunfixed,unstainedphospholipidvesicles(l

8、iposomes)inwater.Thebilayerstructureofthevesiclesisreadilyapparent.(B)Adrawingofasmallsphericalliposomeseenincross-section.Liposomesarecommonlyusedasmodelmembranesinexperimentalstudies.(A,courtesyofJeanLepault.)Figure 10-5.A cross-sectional view of a synthetic lipid bilayer,called a black membrane.T

9、hisplanarbilayerisformedacrossasmallholeinapartitionseparatingtwoaqueouscompartments.Blackmembranesareusedtomeasurethepermeabilitypropertiesofsyntheticmembranes.Figure 10-6.Phospholipid mobility.Thetypesofmovementpossibleforphospholipidmoleculesinalipidbilayer.Figure 10-7.Influence of cis-double bon

10、ds in hydrocarbon chains.Thedoublebondsmakeitmoredifficulttopackthechainstogetherandthereforemakethelipidbilayermoredifficulttofreeze.Figure 10-8.The structure of cholesterol.Cholesterolisrepresentedbyaformulain(A),byaschematicdrawingin(B),andasaspace-fillingmodelin(C).Figure 10-9.Cholesterol in a l

11、ipid bilayer.Schematicdrawingofacholesterolmoleculeinteractingwithtwophospholipidmoleculesinoneleafletofalipidbilayer.Figure 10-10.Four major phospholipids in mammalian plasma membranes.Notethatdifferentheadgroupsarerepresentedbydifferentsymbolsinthisfigureandthenext.Allofthelipidmoleculesshownarede

12、rivedfromglycerolexceptforsphingomyelin,whichisderivedfromserine.Figure 10-11.The asymmetrical distribution of phospholipids and glycolipids in the lipid bilayer of human red blood cells.ThesymbolsusedforthephospholipidsarethoseintroducedinFigure10-10.Inaddition,glycolipidsaredrawnwithhexagonalpolar

13、headgroups(blue).Cholesterol(notshown)isthoughttobedistributedaboutequallyinbothmonolayers.Figure 10-12.Glycolipid molecules.Galactocerebroside(A)iscalledaneutral glycolipidbecausethesugarthatformsitsheadgroupisuncharged.Aganglioside(B)alwayscontainsoneormorenegativelychargedsialicacidresidues(alsoc

14、alledN-acetylneuraminicacid,orNANA),whosestructureisshownin(C).Whereasinbacteriaandplantsalmostallglycolipidsarederivedfromglycerol,asaremostphospholipids,inanimalcellstheyarealmostalwaysproducedfromsphingosine,anaminoalcoholderivedfromserine,asisthecaseforthephospholipidsphingomyelin.Gal=galactose;

15、Glc=glucose,GalNAc=N-acetylgalactos-amine;thesethreesugarsareuncharged.Figure 10-13.Six ways in which membrane proteins associate with the lipid bilayer.Mosttrans-membraneproteinsarethoughttoextendacrossthebilayerasasingleahelix(1)orasmultipleahelices(2);someofthesesingle-passandmultipassproteinshav

16、eacovalentlyattachedfattyacidchaininsertedinthecytoplasmicmonolayer(1).Othermembraneproteinsareattachedtothebilayersolelybyacovalentlyattachedlipid-eitherafattyacidchainorprenylgroup-inthecytoplasmicmonolayer(3)or,lessoften,viaanoligosaccharide,toaminorphospholipid,phosphatidylinositol,inthenoncytop

17、lasmicmonolayer(4).Finally,manyproteinsareattachedtothemembraneonlybynoncovalentinteractionswithothermembraneproteins(5)and(6).Howthestructurein(3)isformedisillustratedinFigure10-14.Membrane proteinsFigure 10-14.The covalent attachment of either of two types of lipid groups can help localize a water

18、-soluble protein to a membrane after its synthesis in the cytosol.(A)Afattyacidchain(eithermyristicorpalmiticacid)isattachedviaanamidelinkagetoanamino-terminalglycine.(B)Aprenylgroup(eitherfarnesyloralongergeranylgeranylgroup-bothrelatedtocholesterol)isattachedviaathioetherlinkagetoacysteineresiduet

19、hatisfourresiduesfromthecarboxylterminus.Followingthisprenylation,theterminalthreeaminoacidsarecleavedoffandthenewcarboxylterminusismethylatedbeforeinsertionintothemembrane.Thestructuresoftwolipidanchorsareshownunderneath:(C)amyristylanchor(a14-carbonsaturatedfattyacidchain),and(D)afarnesylanchor(a1

20、5-carbonunsaturatedhydrocarbonchain).Figure 10-15.A segment of a transmembrane polypeptide chain crossing the lipid bilayer as an a helix.Onlythea-carbonbackboneofthepolypeptidechainisshown,withthehydrophobicaminoacidsingreen andyellow.(J.Deisenhoferetal.,Nature318:618-624andH.Micheletal.,EMBO J.5:1

21、149-1158)Figure 10-17.A typical single-pass transmembrane protein.Notethatthepolypeptidechaintraversesthelipidbilayerasaright-handedahelixandthattheoligosaccharidechainsanddisulfidebondsareallonthenoncytosolicsurfaceofthemembrane.Disulfidebondsdonotformbetweenthesulfhydrylgroupsinthecytoplasmicdomai

22、noftheproteinbecausethereducingenvironmentinthecytosolmaintainsthesegroupsintheirreduced(-SH)form.Figure 10-18.A detergent micelle in water,shown in cross-section.Becausetheyhavebothpolarandnonpolarends,detergentmoleculesareamphipathic.Figure 10-19.Solubilizing membrane proteins with a mild detergen

23、t.Thedetergentdisruptsthelipidbilayerandbringstheproteinsintosolutionasprotein-lipid-detergentcomplexes.Thephospholipidsinthemembranearealsosolubilizedbythedetergent.Figure 10-20.The structures of two commonly used detergents.Sodiumdodecylsulfate(SDS)isananionicdetergent,andTritonX-100isanonionicdet

24、ergent.Thehydrophobicportionofeachdetergentisshowningreen,andthehydrophilicportionisshowninblue.NotethatthebracketedportionofTritonX-100isrepeatedabouteighttimes.Figure 10-21.The use of mild detergents for solubilizing,purifying,and reconstituting functional membrane protein systems.Inthisexamplefun

25、ctionalNa+-K+ATPasemoleculesarepurifiedandincorporatedintophospholipidvesicles.TheNa+-K+ATPaseisanionpumpthatispresentintheplasmamembraneofmostanimalcells;itusestheenergyofATPhydrolysistopumpNa+outofthecellandK+in,asdiscussedinChapter11.Figure 10-22.A scanning electron micrograph of human red blood

26、cells.Thecellshaveabiconcaveshapeandlacknuclei.(CourtesyofBernadetteChailley.)Figure 10-24.SDS polyacrylamide-gel electrophoresis pattern of the proteins in the human red blood cell membrane.Thegelin(A)isstainedwithCoomassieblue.Thepositionsofsomeofthemajorproteinsinthegelareindicatedinthedrawingin(

27、B);glycophorinisshowninred todistinguishitfromband3.Otherbandsinthegelareomittedfromthedrawing.Thelargeamountofcarbohydrateinglycophorinmoleculesslowstheirmigrationsothattheyrunalmostasslowlyasthemuchlargerband3molecules.(A,courtesyofTedSteck.)Figure 10-25.Spectrin molecules from human red blood cel

28、ls.Theproteinisshownschematicallyin(A)andinelectronmicrographsin(B).Eachspectrinheterodimerconsistsoftwoantiparallel,looselyintertwined,flexiblepolypeptidechainscalledaandbtheseareattachednoncovalentlytoeachotheratmultiplepoints,includingbothends.Thephosphorylatedheadend,wheretwodimersassociatetofor

29、matetramer,isontheleft.Boththeaandbchainsarecomposedlargelyofrepeatingdomains106aminoacidslong.In(B)thespectrinmoleculeshavebeenshadowedwithplatinum.(D.W.SpeicherandV.T.Marchesi,Nature311:177-180;B,D.M.Shottonetal.,J.Mol.Biol.131:303-329)Figure 10-26.The spectrin-based cytoskeleton on the cytoplasmi

30、c side of the human red blood cell membrane.Thestructureisshownschematicallyin(A)andinanelectronmicrographin(B).Thearrangementshownin(A)hasbeendeducedmainlyfromstudiesontheinteractionsofpurifiedproteinsin vitro.Spectrindimersassociatehead-to-headtoformtetramersthatarelinkedtogetherintoanetlikemeshwo

31、rkbyjunctionalcomplexescomposedofshortactinfilaments(containing13actinmonomers),tropomyosin,whichprobablydeterminesthelengthoftheactinfilaments,band4.1,andadducin.Thecytoskeletonislinkedtothemembranebytheindirectbindingofspectrintetramerstosomeband3proteinsviaankyrinmolecules,aswellasbythebindingofb

32、and4.1proteinstobothband3andglycophorin(notshown).Theelectronmicrographin(B)showsthecytoskeletononthecytoplasmicsideofaredbloodcellmembraneafterfixationandnegativestaining.(B,courtesyofT.ByersandD.Branton,PNSA.82:6153-6157)Figure 10-31.The three-dimensional structure of a bacteriorhodopsin molecule.

33、Thepolypeptidechaincrossesthelipidbilayerassevenahelices.Thelocationofthechromophoreandtheprobablepathwaytakenbyprotonsduringthelight-activatedpumpingcycleareshown.Whenactivatedbyaphoton,thechromophoreisthoughttopassanH+tothesidechainofasparticacid85.Subsequently,threeotherH+transfersarethoughttocom

34、pletethecyclefromasparticacid85totheextra-cellularspace,fromasparticacid96tothechromophore,andfromthecytosoltoasparticacid96.(R.Hendersonetal.J.Mol.Biol.213:899-929)Figure 10-32.The three-dimensional structure of a porin trimer of Rhodobacter capsulatus determined by x-ray crystallography.(A)Eachmon

35、omerconsistsofa16-strandedantiparallelbbarrelthatformsatransmembranewater-filledchannel.(B)Themonomerstightlyassociatetoformtrimers,whichhavethreeseparatechannelsforthediffusionofsmallsolutesthroughthebacterialoutermembrane.Alongloopofpolypeptidechain(showninred),whichconnectstwobstrands,protrudesin

36、tothelumenofeachchannel,narrowingittoacross-sectionof0.6x1nm.(AdaptedfromM.S.Weissetal.,FEBS Lett.280:379-382)Figure 10-33.The three-dimensional structure of the photosynthetic reaction center of the bacterium Rhodopseudomonas viridis.Thestructurewasdeterminedbyx-raydiffractionanalysisofcrystalsofth

37、istransmembraneproteincomplex.Thecomplexconsistsoffoursubunits,L,M,H,andacytochrome.TheLandMsubunitsformthecoreofthereactioncenter,andeachcontainsfiveahelicesthatspanthelipidbilayer.Thelocationsofthevariouselectroncarriercoenzymesareshowninblack.(AdaptedfromadrawingbyJ.RichardsonbasedondatafromJ.Dei

38、senhoferetal.,Nature318:618-624)4.Characteristics of biomembraneA.Dynamic nature of biomembranevFluidity of membrane lipid.It give membranes the ability to fuse,form networks,and separate charge;vMotility of membrane protein.The lateral diffusion of membrane lipids can demonstrated experimentally by

39、 a technique called Fluorescence Recovery After Photobleaching(FRAP).Figure 10-34.Experiment demonstrating the mixing of plasma membrane proteins on mouse-human hybrid cells.Themouseandhumanproteinsareinitiallyconfinedtotheirownhalvesofthenewlyformedheterocaryonplasmamembrane,buttheyintermixwithtime

40、.Thetwoantibodiesusedtovisualizetheproteinscanbedistinguishedinafluorescencemicroscopebecausefluoresceinisgreenwhereasrhodamineisred.(BasedonobservationsofL.D.FryeandM.Edidin,J.Cell Sci.7:319-335)Figure 10-35.Antibody-induced patching and capping of a cell-surface protein on a white blood cell.Thebi

41、valentantibodiescross-linktheproteinmoleculestowhichtheybind.Thiscausesthemtoclusterintolargepatches,whichareactivelyswepttothetailendofthecelltoformacap.Thecentrosome,whichgovernsthehead-tailpolarityofthecell,isshowninorange.Figure 10-37.Diagram of an epithelial cell showing how a plasma membrane p

42、rotein is restricted to a particular domain of the membrane.ProteinA(intheapicalmembrane)andproteinB(inthebasalandlateralmembranes)candiffuselaterallyintheirowndomainsbutarepreventedfromenteringtheotherdomain,atleastpartlybythespecializedcelljunctioncalledatight junction.Lipidmoleculesintheouter(non

43、cytoplasmic)monolayeroftheplasmamembranearelikewiseunabletodiffusebetweenthetwodomains;lipidsintheinner(cytoplasmic)monolayer,however,areabletodoso.Figure 10-38.Three domains in the plasma membrane of guinea pig sperm defined with monoclonal antibodies.Aguineapigspermisshownschematicallyin(A),whilee

44、achofthethreepairsofmicrographsshownin(B),(C),and(D)showscell-surfaceimmunofluorescencestainingwithadifferentmonoclonalantibody(ontheright)nexttoaphase-contrastmicrograph(ontheleft)ofthesamecell.Theantibodyshownin(B)labelsonlytheanteriorhead,thatin(C)onlytheposteriorhead,whereasthatin(D)labelsonlyth

45、etail.(CourtesyofSelenaCarrollandDianaMyles.)Figure 10-39.Four ways in which the lateral mobility of specific plasma membrane proteins can be restricted.Theproteinscanself-assembleintolargeaggregates(suchasbacteriorhodopsininthepurplemembraneofHalobacterium)(A);theycanbetetheredbyinteractionswithass

46、embliesofmacromoleculesoutside(B)orinside(C)thecell;ortheycaninteractwithproteinsonthesurfaceofanothercell(D).Figure 10-41.Simplified diagram of the cell coat(glycocalyx).Thecellcoatismadeupoftheoligosaccharidesidechainsofglycolipidsandintegralmembraneglycoproteinsandthepolysaccharidechainsonintegra

47、lmembraneproteoglycans.Inaddition,adsorbedglycoproteinsandadsorbedproteoglycans(notshown)contributetotheglycocalyxinmanycells.Notethatallofthecarbohydrateisonthenoncytoplasmicsurfaceofthemembrane.cell coatFigure 10-42.The protein-carbohydrate interaction that initiates the transient adhesion of neut

48、rophils to endothelial cells at sites of inflammation.(A)ThelectindomainofP-selectinbindstothespecificoligosaccharideshownin(B),whichispresentonbothcell-surfaceglycoproteinandglycolipidmolecules.Thelectindomainoftheselectinsishomologoustolectindomainsfoundonmanyothercarbohydrate-bindingproteinsinani

49、mals;becausethebindingtotheirspecificsugarligandrequiresextracellularCa2+,theyarecalledC-type lectins.Athree-dimensionalstructureofoneoftheselectindomains,determinedbyx-raycrystallography,isshownin(C);itsboundsugariscoloredblue.Gal=galactose;GlcNAc=N-acetylglucosamine;Fuc=fucose;NANA=sialicacid.5.An

50、 Overview of membrane functions 1.Define the boundaries of the cell and its organelles.2.Serve as loci for specific functions.3.provide for and regulate transport processes.4.contain the receptors needed to detect external signals.5.provide mechanisms for cell-to-cell contact,communication and adhes

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁