《年产5万吨离子膜烧碱工程可行性研究报告(完整版)资料.doc》由会员分享,可在线阅读,更多相关《年产5万吨离子膜烧碱工程可行性研究报告(完整版)资料.doc(378页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、年产5万吨离子膜烧碱工程可行性研究报告(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)5万吨/年离子膜烧碱工程可行性研究报告2021年10月目 录1 总论2 市场分析3 生产规模及产品方案4 工艺技术方案5 原料、辅助材料及动力供应6 建厂条件和厂址方案7 公用工程及辅助生产设施8 节能9 环境保护10 劳动保护与安全卫生11 工厂组织及劳动定员12 项目实施规划13 投资估算14 财务评价15 结论1、总论1. 1项目规模:5万吨/年离子膜烧碱工程(折100%)1. 2项目建设意义根据氯碱行业用电量大、负荷率高、电压等级高的特点,上马该项目可以带动本公司电力开发和装机总量增加,利
2、用自备电厂优势,降低生产成本。根据氯碱平衡的行业发展原则,推进氯碱与石油化工联合,利用液氯和石油化工基本原料乙烯、丙烯,发展多种耗氯、耗碱及耗氢产品,有利于企业主要产品生产基地化、资源配置合理化,以最少的资金投入取得最大效益。1.3项目主要生产装置生产装置包括:一次盐水、二次盐水及电解、氯氢处理(含事故氯处理)、液氯及包装、高纯盐酸、固碱蒸发、原料与产品储运设施。4本项目财务评价的初步经济技术指标2、氯碱行业的市场分析2.1国内、外市场状况及预测产品的特点和用途烧碱是重要的基本工业原料,其产量大、用户多,广泛应用于轻工、化工、纺织、冶金、电力、医药、农药、染料及有机颜料等行业,离子膜法电解制出
3、的高纯度烧碱是化纤、医药、精细化工行业迫切需要的原料。氯气、液氯及液氯汽化气用途相当广泛,是生产聚氯乙烯、盐酸、环氧化合物、农药、增塑剂、合成橡胶、漂白剂、杀菌消毒剂化纤和制冷剂等氯化物的重要的原料。烧碱产品国内市场供需现状及主要消费去向目前我国拥有近200家氯碱生产企业,烧碱生产规模在总量上已跃居世界第二位,1998年烧碱总量525.82万吨;1999年烧碱总产量572.90万吨;2000年烧碱总产量达到646.22万吨;2001年烧碱总产量713.52万吨。2002年,烧碱总产量823万吨。预计2003年,烧碱总产量850万吨。我国现有烧碱生产仍以隔膜法为主。2001年烧碱总产量713.5
4、2万吨,其中:隔膜法烧碱产量512.98万吨、占71.89%,离子膜法烧碱产量195.94万吨、占27.46%,苛化法烧碱产量4.60万吨、占0.64%。2002年1-11月份烧碱工艺构成:金属阳极法生产的占66.8%,离子膜法烧碱占33%,石墨阳极法占0.2%。国内烧碱的消费领域主要为:轻工、化工、纺织印刷三大行业,合计约占全国总用量的77.3%左右,其余用于医药、冶金及其它领域,约占22.7%。我国近几年烧碱进、出口情况随着我国氯碱工业的发展,烧碱的生产能力和产量不断增加。我国氯碱平衡长期以烧碱要求为主导的局面发生转变是在“七五”末期。“七五”期间,我国烧碱净进口量名列世界第二,仅次于澳大
5、利亚,但从1991年开始进口锐减,出口猛增,我国由烧碱进口大国转为出口大国。随着国民经济的高速发展,各行各业对烧碱和氯气的需求迫切,而对氯气的需求增长日益旺盛并超过对烧碱的需求,在满足大量氯气需求的同时,却又带来烧碱能力的过剩,因此必然有部分烧碱出口。2000年我国烧碱出口量有3040万t;2001年我国烧碱出口量达50万t,2002年1-11月份,我国烧碱出口量达32.9万t。2.2国内、外烧碱市场需要量预测国内各行业烧碱需要量的预测我国各行业的发展并不平衡,其中有机化工将有较快发展,因此化工用烧碱将年均增长5.8%。其它及纺织印刷等行业也有一定增长。我国烧碱需求量前景预测,到2003年需6
6、61万t,2005年需736万t。国际市场烧碱需要量预测自1993年以来,世界各地烧碱供需平衡和进出口形势发生了很大变化,西欧在1997年已从烧碱净出口地区转变为进出口平衡地区或净进口地区;美国、日本、中东、俄罗斯和东欧是主要的氯、碱出口地;中国、印度及其他亚太国家是氯(产品)的主要进口地,占总量的95.7%;澳大利亚、拉丁美洲和一些亚非国家则消费了全部出口烧碱。由于澳大利亚和拉丁美洲等地对烧碱的需求仍十分强劲,为我国烧碱出口创造了一定商机。世界烧碱产能1996年为5203万t,2000年增至5819万t,5年增加了616万t。2001年为6012万t,预计2003年世界烧碱产能将达6277万
7、t,2年将增加265万t。2.3烧碱产品销售的初步预测及竞争能力我国目前虽然烧碱生产能力相对过剩,开工率仅为80%左右,但随着国际经济的复苏、国内经济的持续发展,国内外烧碱的需求量将进一步扩大。国外有关资料表明,烧碱需求在今后几年仍将保持较强劲的增长势头,1997年至2005年的年平均增长率为1.9%。虽然氯气需求量的增加将拉动氯碱生产能力的进一步扩大,烧碱供过于求的状况还不会从根本上得到改变,但最起码将有所缓解。另外,离子膜烧碱因产品质量高、能耗低、三废少、成本低,已成为全世界氯碱工业发展的方向。从全国目前烧碱产需情况来看,总生产能力虽已高于需求,但高纯度离子膜法烧碱产量仍然较低。因此,凭借
8、离子膜法烧碱产品的质量优势,将会拥有较稳定的销售用户。本装置所产烧碱有一部分32wt%液碱用于本厂各装置,其余大部分做成高纯度液碱、固碱,储运方便,销往周边地区及国外市场。2.4国内烧碱产品价格现状及销售价格确定原则和意见国内烧碱产品价格现状1995年至2001离子膜烧碱国内年平均售价1550元/t(不含税价、以下同)、最高为1800元/t、最低为1400元/t。国内固碱1995年至2001年平均售价1700元/t,最高为1950元/t,最低为1500元/t。本工程烧碱产品销售价格确定原则和意见根据原材料、能源、运输等现行价格,参照氯碱行业内部同类产品的现行销售价格以及市场供需初步预测情况,确
9、定烧碱(以100wt%NaOH计)产品销售价格(不含税价)如下:固碱:1850元/t(含税价)32%液碱:1350元/t(含税价)50%液碱:1550元/t(含税价)高纯盐酸:550元/t(含税价)液氯:1750元/t(含税价)3、产品方案及生产规模3.1产品方案产品方案.1 32wt%离子膜烧碱(以100wt%NaOH计)产量:10000吨/年.2 50wt%离子膜烧碱(以100wt%NaOH计)产量:20000吨/年.3 氯气(以100wt %Cl2)产量:40650吨/年.4 氢气(以100wt%H2计)产量:1250吨/年.5 固碱(以99wt%NaOH计)产量:20000吨/年.6
10、高纯盐酸(以31wt%HCI计)产量:10000吨/年产品方案选择与比较烧碱产品方案选择的原则,近期主要考虑市场销售,远期开发耗碱项目;其他产品方案选择的原则,主要满足企业内部生产装置需要;保持吃氯产品总消耗氯能力与电解产氯能力相互平衡,保证生产安全。结合今后建设10万吨/年离子膜烧碱装置的规划,部分设施建设要考虑今后扩量需要。3.2生产规模电解工序生产规模为5万吨/年离子膜烧碱,所产氯气生产液氯外销,氢气生产盐酸,多余部分用于化工生产装置(加氢)。 蒸发按4万吨/年规模考虑,固碱工段按2万吨/年规模。 液氯工段按5万吨/年液氯规模建设,考虑全厂氯平衡系数大于20%。可以生产液氯40650吨。
11、高纯盐酸工段按2万吨/年31wt%高纯盐酸规模。正常生产1万吨。3.3产品、中间产品和副产品品种、规格离子交换膜法氢氧化钠产品液体烧碱产品执行GB/T11199-89质量标准:%优级一级合格外观无色透明液体氢氧化钠32.032.032.0碳酸钠0.040.060.06氯化钠0.0040.0070.01三氧化二铁0.00030.00050.0005氯酸钠0.0010.0020.002氧化钙0.00010.00050.001三氧化二铝0.00040.00060.001二氧化硅0.00150.0020.004硫酸盐(以Na2SO4计)0.0010.0020.0023.3.2离子交换膜法电解联产湿氯气
12、,湿氢气参照执行引进合同质量标准:指标名称主要指标湿氯气Cl297.5O2 2.0H20.03湿氢气H299.9工业用液氯产品执行GB/T5138-1996项目指标优等品一等品合格品氯含量,%(V/V)99.899.699.6水分含量,%(m/m)0.0150.0300.040高纯盐酸产品参照执行引进合同质量标准:项目指标备注HCL含量wt%31Fe3+含量wt ppm10Ca2+ Mg3+含量wt ppm0.3以Ca2+计CLO-含量wtppm0次氯酸钠溶液副产品执行HG/T2498-93质量标准:%项目指标I型型型外观淡黄色液体有效氯含量(以Cl计)13.010.05.0游离碱含量(以Na
13、OH计)0.11.0铁含量 0.010注:本工程次氯酸钠溶液有效氯含量(以Cl计)一般10.0%。3.4氯平衡表3-4-1:氯平衡表产品名称生产能力(t/a)单耗(产)量(t/t)产氯量(t/a)耗氯量(t/a)离子膜烧碱500000.88644300液氯500001.0251000高纯盐酸100000.3153150合计43300545005万吨/年离子膜烧碱工程建成后,本公司氯年加工能力达到54500吨,大于年产氯量433000吨,由此说明足以保证氯碱生产系统安全运行。4、工艺技术方案4.1工艺技术路线选择过滤盐水制备工艺过滤盐水制备是氯碱生产工艺过程至关重要的工段,精制效果的好坏直接影响
14、产品的质量和产量。传统的盐水精制工艺是同时加入反应剂,反应产生的含CaCO3、Mg(OH)2、Ba SO4等沉淀物的粗盐水经过澄清,再经虹吸式砂滤器、a-纤维素预涂的炭素烧结管过滤器,最终除去沉淀物提到合格的过滤盐水该工艺对杂质钙镁比有一定要求,流程较长,设备庞大、占地多, a-纤维素预涂比较麻烦,而且管理繁琐、运行和检修的工作量都很大,生产成本较高。国内戈尔膜分离工艺近年得到了广泛应用。其特点是加入反应剂先除去硫酸根,再加上反应剂除去镁离子和有机物,再加入Na2CO3反应产生CaCO3后,用泵打入戈尔膜液体过滤器过滤,最终得到合格的过滤盐水。由于是分别反应除杂质,因此该工艺适合各种规格的原盐
15、和卤水,流程较短,占地较少,过滤器操作简单,自动瞬间反冲,不需要停机清理,因此无需备用设备,生产成本较低。一次盐水工段拟定选用尔尔膜过滤工艺。淡盐水提浓有单效薄膜蒸发工艺,多效降膜蒸发工艺,多效板式蒸发工艺。单效薄膜蒸发器设备投资少,但蒸气消耗高。多效降膜蒸发汽消耗低,但设备投资高,蒸发器较高,土建投资较高。多效板式蒸发蒸汽消耗低,设备投资较低,蒸发器较小,土建投资较低。本装置拟选用两效板式蒸发工艺。4.1.2二次盐水及电解工艺是离子膜烧碱生产工艺的核心部分。二次盐水及电解工艺的一般包括三道工序:二次盐水精制、离子膜电解及淡盐水脱氯。.1二次盐水精制二次盐水精制目前普遍采用合树脂吸收钙镁等杂质
16、离子。树脂再生使用盐酸、烧碱和纯水。定期自动进行再生。.2电解以食盐为原料的电解制碱方法有水银法、隔膜法和离子膜法。水银法电解,其产品质量好,但能耗高,对环境污染严重,此工艺已被淘汰。隔膜法电解,出电解槽碱液浓度低,含有大量氯化钠,不能直接做产品使用,尚需经过蒸发、浓缩、除盐后方能作产品销售,且只能用于一般的纺织、造纸等工业,而不适用于粘胶纤维、维尼隆、腈纶、味精、染料等需高纯碱的工业,能耗低、无汞害,无石棉污染、投资省,是氯碱工业的发展方向。我国自86年起先后从日本旭硝子、旭化成、氯工程;意大利迪诺拉;伍德迪诺拉;英国ICI、美国ELTECH等公司引进约50套离子膜烧碱装置,目前生产能力已占
17、总能力的33%。离子膜单极槽的槽型,分为单极槽和复极槽。单极槽单台生产能力小,电槽台数较多,较适宜于生产能力较小的装置,单台检修时生产损失较大,设备等价较低。通过对单、复极电槽在技术、经济等方面的综合对比,结合本项目装置能力较大,本项目拟选用引进具有世界先进水平的自然循环复极式离子膜电槽。4.1.3氯氢处理工艺.1氯气处理由电解槽出来的氯气,温度高并伴有大量的水和杂质,必须进行冷却、干燥和净化处理。氯气的冷却有时接冷却两种方式。直接冷却,传热效果好,冷却快。本设计彩氯气经洗涤塔直接冷却,然后再用钛管冷却器间接冷却。氯气干燥塔有泡沫塔和填料塔三种设备。泡沫塔具有传质速率高,生产强度大,结构简单,
18、制造维修方便等优点,缺点是结构复杂,阻力降小。填料塔和泡罩塔塔串联干燥工艺。氯气压缩设备有纳氏泵、小透平和大透平。纳氏泵电耗高,单台生产能力小,设备台数多,设备总体投资低。小透平电耗低,单台生产能力较大,设备台数较少,设备台数少,设备总体投资高。本装置设计选用小透平工艺。.2氢气处理由电解槽出来氢气温度高,含水蒸汽量大且含碱雾,故必须进行洗涤冷却。根据聚氯乙烯装置对氢气较低含水和较高压力的要求,采用循环水间接冷却、液环泵压缩、冷冻水间接冷却工艺。4.1.4氯气液化通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。高压法和中压法消耗低温冷冻量少,能耗低,但对氯气输送设备
19、的要求较高,且投资高。低压法一般用氨或氟城昂制冷。氨制冷是我国传统的工艺技术,因其使用设备多,占地面积大,能耗高,属淘汰工艺。氟化物制冷是我国近十向年发展起来的技术,在设备数量、占地面积、能耗方面均比氨制冷少许多。由于本装置平时不生产液氯,因此没有必要选用投资高的设备。因此本装置拟采用氟化物制冷、低温低压法,氯气液化温度-22氯气压力0.2MpaG,液下泵输送液氯装瓶。固碱固碱工段的工艺设备、阀门管道、仪表等到均为超低碳高镍不锈钢和纯镍材质,国内难以加工制作和供应,目前一般成套引进。固碱工艺和设备专利供应商目前主要有瑞士BERTRAMS和意大利SET公司,其工艺均采用多效降膜蒸发器,最后是入降
20、膜式固碱炉制得熔融碱,然后再进入片碱机冷却制得片碱。BERTRAMS公司的固碱炉生产历史最长,在世界范围内专利装置最多。SET公司的蒸发器在设计上有独到之处,且设备价格较低,目前被广泛采用。4.2工艺流程和消耗定额工艺流程简述.1一次盐水工段卤水加入精制剂BaCI2溶液后进入澄清桶,以除去系统中过量的SO42-。澄清后的粗盐水自流入折流槽,加入精制剂NaOH溶液NaClO溶液自流进而除镁反应罐。反应后在盐水送至于汽水混合器,与压缩空气混合后进入加压溶气罐,饱含空气的盐水减压后在文丘里混合器中与絮凝剂FeCl3溶液混合,然后进入预处理器,由于减压作用,气泡大量释放出来,附着在杂质颗粒上并向上浮起
21、,浮泥在预处理器上部自动排出。澄清后的盐水从预处理器上部溢流进折流槽,加入精制剂Na2CO3溶液后进入除钙反应器。反应后在盐水自流入盐水缓冲槽,经过滤器进液泵加压后送入戈尔膜过滤器,合格的过滤盐水自流入一次盐水贮槽,再经一次盐水泵送往二次盐水及电解工段。澄清桶、预处理器及戈尔膜过滤器出来的盐泥排入盐泥贮槽,用盐泥泵打入箱式压滤机,压滤后的滤液回收用于化盐,滤渣由堆置风干,装车外运。电解工段返回的淡盐水,收集于淡盐水贮槽,经淡盐水泵加压和换热器预热后,进入二效蒸发器,用一效来的二次蒸汽作为絷源进行提浓。中间盐水用泵送至一效蒸发器,用生蒸汽作为热源进一步提浓。提浓后的盐水用泵送入一次盐水贮槽,与过
22、滤盐水混合。.2二次盐水精制及电解工段.2.1二次盐水精制一次盐水工段来的过滤盐水,经过流量调节送至离子交换树指塔共2台,塔内装有合树脂,平时2台串联使用。运行中,第1台负荷操作,第2台,作为保护,使盐水中所含微量Ca2+、Mg2+等多价阳离子会计师小于规定值。出离子交换树脂塔出来的二次精制盐水送入电解工序。2台离子交换树脂塔出程序控制器约每24个小时进行一次运转和再生过程的自动切换操作。再生时单台塔独立运行。由高纯盐酸工段送来的31wt%盐酸和在界区内由电解工序送来的32wt%烧厣经流量测量系统与纯水混合配制成需浓度后,经程序控制阀进入离子交换树脂塔内,再生过程中所排出的酸性和厣性废液,经中
23、和后送到废液池处理。.2.2电解及淡盐水脱氯树脂塔出来的二次精制盐水加入到每台电解槽。阳极液经电解后产生的淡盐水和氯气进入淡盐水槽,氯气从淡盐水中分离、出来送氯气处理工序。阴极液出阴极液泵在各单元槽的阴极室和阴极液槽之间循环总管中以保持碱液浓度稳定。另一部分阴极液经碱液送至固碱工段。淡盐水槽中的淡盐水用淡盐水泵抽出,加入31wt%高纯盐酸调节PH值后,送入脱氯塔上部,经真空闪蒸将淡盐水中的游离氯脱出。脱氯后的淡盐水中加入32wt%烧碱调节PH为911。中和后的淡盐水加入亚硫酸钠溶液完全除去游离氯后用泵送至一次盐水工段。.3氯氢处理工段.3.1氯气处理从电解工序来的高温湿氯气经氯气洗涤塔用氯水洗
24、涤冷却,然后进入钛管冷却器,先后用冷冻水将其冷却到1214。氯气经水雾捕集器分离出冷凝水后,依次进入一级填料塔、二级填料塔、泡罩塔,分别与稀硫酸和浓硫酸逆流接触进行干燥,然后进入酸雾捕集器,处理完的氯气含水量降至50wtppm以下。新鲜的98wt%浓硫酸,依次进入泡罩塔、二级填料塔、一级填料塔,浓度逐渐降低。从二级填料塔塔底出来的78wt%左右的稀硫酸,流入稀硫酸贮槽,然后送至罐区作为副产品出售。干氯气经氯气压缩机压缩后送往液氯工段或其他以氯为原料的生产装置。.3.2氢气处理电解工序来的氢气进入氢气冷却器用冷却水间接冷却,使氢气温度下降至40左右,冷却后的氢气由压缩机加压后,进入氢气终冷器用冷
25、冻水间接冷却,再经水雾捕集后磅往高纯盐酸工段或其他化工耗氢装置。.4液氯工段由氯气处理工序来的40、 0.2MpaG的干氯气,经氯气缓冲罐进入氯气液化器,出扫气液化器的气液混合物经液氯气液分离器分离,尾气含Cl2l1%,去高纯盐酸工段。液氯进液氯贮槽,用液下泵送液氯装瓶。.5高纯盐酸工段氯气、氢气进入石墨三合一炉后,经合成所化氢气并经冷却、吸收制成31wt%高纯盐酸,尾气去尾气塔进一步用水吸收手排空。吸收用水为纯水。成品高纯盐酸送至高纯盐酸贮槽,然后送至二次盐水及电解工段使用。.6固碱工段电解来的烧碱液依次经过一级预蒸发器、二级预蒸发器、固碱炉,分别经二次蒸汽、生蒸汽、和熔盐加热,蒸去烧碱中的
26、不分。高温熔融烧碱进入征碱机进行冷却结片,然后经装袋、计量封边和包装。用汽车将袋装固碱送固碱仓库。经鼓风机加压空气,以及从装置外来的天然气燃料,经烟道气预热后,进行配比燃烧,在熔盐炉内将熔盐加热,烟道气回收热量后排空。加热的熔盐进入固碱炉,与烧碱液间接换热后循环利用。4.3消耗定额以每吨100wt%NaOH计,装置能力为5万吨/年32%wt烧碱。序号名称及规格单位消耗量备注吨耗时耗年耗1卤水NaCl=290g/lt2.921460002食盐t 0.73365003纯碱:Na2CO398.5wt%kg15750t4氯化钡:BaCl298wt%kg126005纯水t1.41600006助沉剂kg0
27、.5257亚硫酸钠:Na2CO395wt%kg0.630t8离子膜烧碱:折NaOH100 wt%kg199包装袋个4080万个10离子膜m20.01500 m211螯合树脂L0.021000t12硫酸:H2SO498wt%kg22110013直流电kwh21601.08亿度负荷1.35万KW14动力电kwh1500.75亿度负荷0.094万KW15新鲜水 28t1.5750016循环水 33t19017仪表空气0.7MPaNm31618工艺空气0.5MPaNm31019天然气燃料Nm315020蒸汽1.0MPat1.9950005、原料、辅助材料及动力供应5.1原料供应序号名称规格年用量t来源
28、1卤水NaCl 290g/l146000从区内卤井购买2食盐93%36500从省内盐场购买5.2辅助材料供应序号名称规格年用量t来源1亚硫酸钠外观 白色粉末Na2SO3 95wt%NaCl 0.5wt%Fe3+ 0.02wt%30外购2助沉剂FeCl3 90wt%温度 3025外购3离子交换膜500m2引进4包装袋10袋公斤/袋380万个外购5螯合树脂型号 TP260或相当品堆积比重 0.70.8g/bl交换容量 1.3eq/l钠型树脂1000升引进6纯碱Na2CO3 98.5wt%750外购7硫酸H2SO4 98wt%1100外购8氯化钡BaCl2 98wt%600外购5.3动力供应序号名称
29、规 格年用量t来源1纯水电阻率 1105cmSiO2 0.1wtppm160000本装置提供2循环水供水 33回水 44本厂提供3生产水75000本厂提供4蒸汽1.0MPa95000本厂提供5天然气Nm3本厂提供6电解电10kV 108000000本厂提供动力电380V 本厂提供6、建厂条件和厂址方案6.1 拟建地点概况xxx地理位置及厂址选择xxxx县地处山东省xx部,北纬3458-3525,东径11458-11516,属黄河冲积平原,全境地势平坦,海拔高度54.6-66.5来,高差12米。在xxxxxx工业园内,在结合项目生产安全特点的基础上,建议5万吨/年离子膜烧碱工程项目建在与石化工业
30、园电源中心临近的区域,并处在下风处,可以确定在现在电厂东部临近高速公路处,该属于xxxxx工业园发展规划区,地势平坦,没有山岭和突兀岗地。在充分利用原有生产区域的基础上,向东平整少量荒地即可满足建设需要。 区域水文、地质、气象资料厂址地处xxxxxxx,周围皆为第四系覆盖,厚度很大,在千米以上,地面为黄河漫滩冲积层。第四系下伏基岩属侏罗系。据原工程地质勘察报告:地质属黄河冲积土,表层以粘土为主,深层以细砂、粉砂为主,地耐力8-12t/m2,地震裂度为七度设防区。地下水位深3.10-3.80m。该区地下水质较好,对混凝土基础无浸蚀性。该区地下水资源丰富,地下浅层水埋深3.5 m左右,在地下40m
31、、180m、300m处贮有三层淡水。单井出水量50-60m3/h,水质较好。xx县气候稳定,四季分明,温度适宜,风压平和,降水均匀,冰冻期较短,历年来没有重大灾害性天气发生。气温:历年平均气温 13.6历年平均最高气温19.4历年平均最低气温8.8极端最高气温 40极端最低气温 -16.8气压:历年平均气压100.996KPa绝对最高气压102.0KPa绝对最低气压99.59KPa湿度:历年平均相对湿度 71%降雨量:年平均降雨量624.1mm年最高降雨量956.5mm年最低降雨量264.9mm降雪量:年平均降雪量15mm积雪最大厚度120mm风:全年主导风向为北风,年频率为14%;次主导风向
32、为南风,年频率为13%;出现最小的是西风和西北风,仅1%,年平均风速3.7m/s,3-4月平均最大风速为4.8m/s。6.2建厂条件该项目建设地点确定在现在xxxxx处,此处具有相当好的建设条件和优势。 配套条件紧靠xxxxx原有生产装置,利用现有水、电、汽、风十分方便,并便于管理,可以不建或少建厂区生活福利设施,完全依靠已有设施,并且可以减少征地费用,节约投资。.1水源、供排水厂区水源主要为地下水,井深400m以下,地下水资源丰富。该项目在充分利用原有供水设施的基础上,只需补充少量用水即可满足生产需要,xxxxx化工业园拟建一座污水处理厂,污水统一排放至集团公司污水处理场或新建污水处理厂,集
33、中处理达标后排入xxxxxxx。.2电源、供电、通讯距县110KV工业变电站约1公里,距县110KV变电站约2公里。集团公司通讯系统完备并有富余,可依托利用。公司装置区内自有6000+120002+3000KW发电能力,而且xxxxxx化工业园计划新建25万KW电厂,一期建设5万KW机组与2台130t/hr中温中压CFB热电联产项目,因而电源可靠,用电方便。5万吨/年离子膜烧碱将新增1.45KW的用电负荷,xxxx工业园电力规划完全可以满足。.3 环境条件厂区周围工业企业较少。由于公司在正常生产中非常注重三废治理,完全达到或超过国家环保标准,因而大气及水体污染较轻,环境容量较大。协作条件本项目
34、建设地点xxxxx,故本项目的文化、教育、卫生等以县城为依托。自然条件厂址位于xxxxx处,现在电厂东部临近高速公路处,初定3公顷,地势平坦。北靠五里河为东明县排污主干渠,排水方便。据工程地质勘察报告:地质属黄河冲积土,表层以粘土为主,深层以砂为主,地耐力8-12t/m2,该地区地震烈度为七度。地下水位深3.10-3.80m,水质较好,对混凝土基础无浸蚀性。该区域适合建设工业装置。交通运输条件该项目厂址交通运输条件极为便利。6.3 厂址方案本工程属技术改造项目,厂址确定在现在电厂东部临近高速公路处。需征地3公顷,东西长300m,南北宽100m。主生产装置需新建,辅助生产设施及公用工程依托原厂,
35、只需少量改造即可满足该项目正常生产需要。7、公用工程及辅助生产设施7.1 平面布置基于平面布置原则,将烧碱装置的固碱工段布置在烧碱装置西侧,中间布置二次盐水及电解、罐区、变配电及控制室,烧碱装置东侧由南向北依次布置一次盐水工段、氢气处理及盐酸工段、氯气处理及液氯工段。尽量使氯气及液氯工段距离以氯气为原料的装置近些,降低昂贵的氯气管道投资。 装置组成根据本装置建构筑物和装置性质可以分为以下部分: 一次盐水工段 二次盐水精制及电解工段 氯气处理与液氯工段 氢气处理与盐酸工段 固碱工段 罐区变配电及中心控制室 装置平面布置7.2 给排水本装置脱盐水量为20-0m3/h,由电厂化水工段供给;循环水量为
36、2000-2500 m3/h,由公司内改造后的循环水系统提供。其他排水、消防给水、生活用水、雨水排放,依托原来设施。7.3供热本装置用0.98Mpa饱和蒸汽9.4t/h, 0.49Mpa饱和蒸汽2.5t/h。7.4 供电 根据本装置特点,依托本公司改造后的电力系统供电。7.5 储运 原料卤水由槽车送至卤水槽,其他化学品由仓库和罐区统一考虑,本装置设立盐库。产品为液体烧碱、固碱、液氯。固碱储存于仓库,储存周期30天。8、节能8.1能耗指标及分析编制原则.1认真贯彻国家产业正策和有关节能规定,努力做到合理利用能源和节约能源。.2积极采用节能型的先进工艺和高效设备,严禁选用已公布淘汰的机电产品,降低
37、产品耗指标。.3水、电、汽等动力系统设置能耗检测仪表,提高自控水平,加强计量管理。项目能耗指标该项目离子膜烧碱产品32wt%液碱与隔膜法金属阳极电解相应规格的产品综合能耗对照,见表8.1。表8.1 离子膜法与隔膜法32wt%液碱(折100%NaOH)能耗对照表序号项目单位消耗定额离子膜隔膜法1交流电Kwh250026542蒸汽kg40035763新鲜水t3124纯水t35压缩空气Nm35217.5从表8.1可以看出, 32wt%离子膜液碱的综合能耗指标大大低于相同浓度与隔膜法金属阳极碱液的综合能耗。目前大中型厂生产32wt%液碱(折100wt%NaOH)采用金属阳极(D=1500A/m2)时,
38、平均每吨综合能耗为1.60吨标煤;本工程每吨32wt%离子膜碱的综合能耗仅为0.984吨标煤。能耗分析本工程的离子膜电解工序,从电解槽制出的碱液NaOH浓度是32wt%,直流电耗是2100kwh/t,而大中型厂隔膜法金属阳极电解工序直流电耗指标最低也为2304kwh/t。显然,离子膜碱的直流电耗足以达到国际先进水平的指标。8.2节能措施综述主要工艺流程采用节能新技术、新工艺.1降低槽电压及经济电流密度的选择为了降低能耗就要获得较高的电流效率和较低的槽电压,必须在较大的电流密度下运行,仍能保持低电耗,以使每吨离子膜烧碱电解电耗2100-2200kwh,甚至更低。槽电压是影响电解槽直流电耗的主要因
39、素之一。当电流效率为96%时,槽电压每升降0.1V,影响电耗69.8kwh/t。从槽电压和电流密度的相依关系来分析,槽电压随着电流密度的降低而降低,而电耗又是随槽电压的降低而降低。所以使槽电压维持在适当值,是节能措施的一大关键。一般大中型氯碱厂电解槽电压定为:金属阳极电解槽,D=15A/dm2时,槽电压3.3V;石墨阳极电解槽,D=8A/dm2时,槽电压3.4V。本工程拟引进的自然循环复极式电解槽,电流D=39A/dm2时,槽电压仅3.035V。优良的电槽参数,必然有利于降低离子膜碱的能耗指标。离子膜复极槽电流密度比金属阳极高1.5倍,因而单台产量大,宜在大中型厂推广应用。自然循环复极式电解槽
40、,阳极液采用自然循环方式,可有效地提高离子膜性能和延长离子膜的使用寿命,免除阳极液外部强制性循环装置,节约动力电消耗。离子交换膜是离子膜法制碱技术的核心。电解过程中饱和食盐水在离子膜电解槽中电解,直接获得浓度32wt%的碱液和高纯度氯气,就意味着离子膜的一侧要承受高温、高浓度的酸性盐水和氯气,另一侧则是高温、高浓度的碱液。由于离子膜具有高度的造反透过性,高度的物化稳定性和机械强度,高度的离子交换容量和电流效率,同时又具有低的膜电阻和低的电解质扩散,因此完全可以适应电解过程的苛刻条件,而且使用寿命长达3.5-5年。离子膜独具的技术特性是石墨阳极陋膜和金属阳极隔膜无法比拟的,石墨阳极隔膜因石墨阳极
41、腐蚀堵塞,寿命一般为3-6个月,金属阳极隔膜寿命虽然长些,但只能达到9-10个月。隔膜电解工艺因受石棉隔膜局限,从电槽制得的碱液NaOH浓度比离子膜法低得多,一般只有11-12wt%,且其中含有大量NaCL需要除掉,必须经过蒸发才能制得30wt%成品液碱。.2缩小极距可以降低槽电压阴、阳极间距是影响槽电压的因素之一。电解槽两极间的距离小,电极表面光滑,电流经过的路程就短,同时使气体能迅速脱离电极表面,电流分布均匀,减少电压降,有利获得较好的技术经济指标。本工程拟采用的阳离子交换膜的溶胀度、机械强度都优于石棉隔膜,能够在现有较小极距的基础上进一步缩小极间距,由极距3mm左右逐渐接近零极距即两极之
42、间的距离等于离子膜厚度。.3严格控制进槽盐水质量离子膜法制碱技术中,进入电解槽的盐水质量是该项技术的关键。盐水质量对离子膜的寿命、槽电压和电流效率有着重要的影响。(1)盐水NaCL深度要求达到310-320g/l。在实际生产中NaCL浓度一般都超过315g/1,提高阳极液中NaCL浓度,能使阳极附近的CL-浓度升高,而抑制电解副反应,避免造成电流效率下降。(2)盐水中有害杂质含量不得超标。电解槽用的阳离子交换膜具有选择和透过溶液中阳离子的特性,因止它对盐水中Na+能选择和透过而对Ca2+、Mg2+等也同样能透过。Ca2+、Mg2+等在透过交换膜时,会同少量从阴极室以迁移来的OH生成Ca(OH)
43、2沉淀。沉淀堵塞离子膜,使膜电阻增加,引起槽电压上升,还会加剧OH-向阳极室的反迁移,降低了电流效率。因此合格的一次盐水必须经螯合树脂塔进行二次精制,使盐水含Ca2+、Mg2+等总量低于50ppb,实际上要求长期稳定控制在20ppb以下。为此,必须严格控制二次精制盐水质量,杂质含量不得超标。在设计中积极选用先进、可靠的监测、检测仪器和仪表,以控制盐水中杂质含量。(3)盐水的PH值控制在9-10。为了降低氯中含氧量,需要在进槽盐水中加盐酸以中和从阴极室返迁移来的OH,但要严格控制阳极液的PH值不得过低。如果加了过时的盐酸或搅拌不均,会破坏离子膜的导电性,膜的电压很快上升并造成永久性的损坏。如果生
44、产上确有必要在盐水中连续加入盐酸应采用连锁装置,当停止或中断电源时,盐酸立即自动停止加入,以防止离子膜损坏。(4)进电解槽盐水温度应维持在85-90。加强电槽保温是提高电流效率的重要措施之一。提高电解温度可降低氯的溶解度,增加阳极液中NaCl的浓度。电槽温度较高使氯气带走水蒸汽量增加,有利于阳极反应,还可降低槽电压。因而设计中考虑电槽布置在室内,电槽温度控制在一定范围内。.4因地制宜,合理选择槽型槽型规模大型化,增大电槽容量,有利于技术管理,减少环境污染,改善劳动条件。电槽数量少,使电解厂房、电槽维修费用降低,而且因在相同产量情况上,一台大电槽比多台小电槽散热少,有利于降低能耗。机电设备选型设计中生产装置,辅助生产装置和公用设施所选用的机电设备一律不得有已公布淘汰的机电产品。按照精打细算、勤