《铰链式颚式破碎机方案分析课程设计说明书.doc》由会员分享,可在线阅读,更多相关《铰链式颚式破碎机方案分析课程设计说明书.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、机械原理课程设计说明书题目: 铰链式颚式破碎机方案分析 目 录 一 设计题目1二 已知条件及设计要求12.1已知条件12.2设计要求2三. 机构的结构分析23.1六杆铰链式破碎机 23.2四杆铰链式破碎机 2四. 机构的运动分析24.1六杆铰链式颚式破碎机的运动分析 24.2四杆铰链式颚式破碎机的运动分析 4五.机构的动态静力分析65.1六杆铰链式颚式破碎机的静力分析 65.2四杆铰链式颚式破碎机的静力分析12六. 工艺阻力函数及飞轮的转动惯量函数 166.1工艺阻力函数程序 166.2飞轮的转动惯量函数程序 17七 .对两种机构的综合评价 19八 . 主要的收获和建议 20九 . 参考文献
2、20东北大学机械原理课程设计 铰链式颚式破碎机方案分析一 设计题目铰链式颚式破碎机方案分析二 已知条件及设计要求2.1已知条件图(a)所示为六杆铰链式破碎机方案简图。主轴1的转速为n1 = 170r/min,各部尺寸为:lO1A = 0.1m, lAB = 1.250m, lO3B = 1m, lBC = 1.15m, lO5C = 1.96m, l1=1m, l2=0.94m, h1=0.85m, h2=1m。各构件质量和转动惯量分别为:m2 = 500kg, Js2 = 25.5kgm2, m3 = 200kg, Js3 = 9kgm2, m4 = 200kg, Js4 = 9kgm2,
3、m5=900kg, Js5=50kgm2, 构件1的质心位于O1上,其他构件的质心均在各杆的中心处。D为矿石破碎阻力作用点,设LO5D = 0.6m,破碎阻力Q在颚板5的右极限位置到左极限位置间变化,如图(b)所示,Q力垂直于颚板。图(c)是四杆铰链式颚式破碎机方案简图。主轴1 的转速n1=170r/min。lO1A = 0.04m, lAB = 1.11m, l1=0.95m, h1=2m, lO3B=1.96m,破碎阻力Q的变化规律与六杆铰链式破碎机相同,Q力垂直于颚板O3B,Q力作用点为D,且lO3D = 0.6m。各杆的质量、转动惯量为m2 = 200kg, Js2=9kgm2,m3
4、= 900kg, Js3=50kgm2。曲柄1的质心在O1 点处,2、3构件的质心在各构件的中心。 (a) 六杆铰链式破碎机 (b) 工艺阻力 (c) 四杆铰链式破碎机2.2设计要求试比较两个方案进行综合评价。主要比较以下几方面:1. 进行运动分析,画出颚板的角位移、角速度、角加速度随曲柄转角的变化曲线。2. 进行动态静力分析,比较颚板摆动中心运动副反力的大小及方向变化规律,曲柄上的平衡力矩大小及方向变化规律。3. 飞轮转动惯量的大小。三. 机构的结构分析3.1六杆铰链式破碎机3.2四杆铰链式破碎机四. 机构的运动分析4.1六杆铰链式颚式破碎机的运动分析(1)调用bark函数求2点的运动参数形
5、参n1 n2 n3 k r1 r2 gam t w e p vp ap实参1 2 0 1 0.1 0.0 0.0 t w e p vp ap(2)调用rrrk函数求3点的运动参数形参m n1 n2 n3 k1 k2 r1 r2 t w e p vp ap实参-1 2 4 3 2 3 1.25 1 t w e p vp ap(3)调用rrrk函数求5点的运动参数形参m n1 n2 n3 k1 k2 r1 r2 t w e p vp ap实参1 3 6 5 4 5 1.15 1.96 t w e p vp ap(4)程序:对构件5的运动轨迹分析#includegraphics.h#include
6、subk.c#include draw.cmain() static double p202,vp202,ap202,del; static double t10,w10,e10,tdraw370,wdraw370,edraw370; static int ic;double r12,r23,r34,r35,r56;double pi ,dr;double r2,vr2,ar2;int i; FILE*fp;r12=0.1,r23=1.25,r34=1.0,r35=1.15,r56=1.96;w1=-17.8;del=15; pi=4.0*atan(1.0);dr=pi/180.0;p11=0
7、.0;p12=0.0;p41=0.94; p42=-1.0;p61=-1.0;p62=0.85; printf(n The Kinematic Parameters of Point 5n); printf(No THETA1 t w en); printf( deg rad rad/s rad/s/sn); if(fp=fopen(file20133098.txt,w)=NULL) printf(Cant open this file.n);exit(0);fprintf(fp,n The kinematic parameters of point 10n);fprintf(fp,No TH
8、ETA1 t w en);fprintf(fp, deg rad rad/s rad/s/s);ic=(int)(360.0/del);for(i=0;i=ic;i+) t1=(-i)*del*dr;bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rrrk(-1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap);rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap);printf(n%2d %12.3f %12.3f %12.3f %12.3f,i+1,t1/dr,t5,w5,e5);fprintf(fp,n%2d%12.
9、3f%12.3f%12.3f%12.3f,i+1,t1/dr,t5,w5,e5);tdrawi=t5;wdrawi=w5;edrawi=e5;if(i%16)=0)getch();fclose(fp);getch();draw1(del,tdraw,wdraw,edraw,ic);(5)数据:随主动件1变化的运动参数 The kinematic parameters of point 5No THETA1 t5 w5 e5 deg rad rad/s rad/s/s 1 0.000 -1.658 0.346 3.955 2 -15.000 -1.653 0.392 2.002 3 -30.00
10、0 -1.647 0.400 -0.932 4 -45.000 -1.641 0.362 -4.354 5 -60.000 -1.637 0.274 -7.504 6 -75.000 -1.633 0.146 -9.610 7 -90.000 -1.632 -0.001 -10.181 8 -105.000 -1.633 -0.145 -9.162 9 -120.000 -1.637 -0.265 -6.90210 -135.000 -1.641 -0.345 -3.98011 -150.000 -1.646 -0.382 -1.00812 -165.000 -1.652 -0.377 1.5
11、1813 -180.000 -1.657 -0.341 3.29614 -195.000 -1.662 -0.284 4.23615 -210.000 -1.666 -0.220 4.43516 -225.000 -1.668 -0.156 4.12017 -240.000 -1.670 -0.10 3.58318 -255.000 -1.671 -0.051 3.10519 -270.000 -1.672 -0.007 2.89720 -285.000 -1.672 0.036 3.06321 -300.000 -1.671 0.085 3.57022 -315.000 -1.669 0.1
12、42 4.24623 -330.000 -1.667 0.209 4.79024 -345.000 -1.663 0.281 4.81625 -360.000 -1.658 0.346 3.955(6)线图:构件5角位置,角速度,角加速度线图六杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线4.2四杆铰链式颚式破碎机的运动分析(1)调用bark函数求2点的运动参数形参n1 n2 n3 k r1 r2 gam t w e p vp ap实参1 2 0 1 0.04 0.0 0.0 t w e p vp ap(2)调用rrrk函数求3点的运动参数形参m n1 n2 n3 k1 k2 r1 r
13、2 t w e p vp ap实参1 2 4 3 2 3 1.11 1.96 t w e p vp ap(3)程序:对构件3的运动轨迹分析#includegraphics.h#include subk.c#include draw.cmain() static double p202,vp202,ap202,del; static double t10,w10,e10,tdraw370,wdraw370,edraw370; static int ic;double r12,r23,r34;double pi,dr;double r2,vr2,ar2;int i;FILE*fp; r12=0.0
14、4,r23=1.11,r34=1.96;w1=-17.8;del=15;pi=4.0*atan(1.0);dr=pi/180.0; p11=0.0;p12=0.0;p41=-0.95;p42=2.0; printf(n The Kinematic Parameters of Point 5n); printf(No THETA1 t3 w3 e3n); printf( deg rad rad/s rad/s/sn);if(fp=fopen(filel20133098.txt,w)=NULL) printf(Cant open this file.n);exit(0);fprintf(fp,n
15、The kinematic parameters of point 10n);fprintf(fp,No THETA1 t3 w3 e3n);fprintf(fp, deg rad rad/s rad/s/s);ic=(int)(360.0/del);for(i=0;i=ic;i+)t1=(-i)*del*dr;bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rrrk(1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap);printf(n%2d %12.3f %12.3f %12.3f,i+1,t1/dr,t3,w3,e3);fprintf(fp
16、,n%2d%12.3f%12.3f%12.3f%12.3f,i+1,t1/dr,t3,w3,e3);wdrawi=t1/dr;tdrawi=t3;wdrawi=w3;edrawi=e3;if(i%16)=0)getch();fclose(fp);getch();draw1(del,tdraw,wdraw,edraw,ic);(4)数据:随主动件1变化的运动参数 The kinematic parameters of point 3No THETA1 t3 w3 e3 deg rad rad/s rad/s/s 1 0.000 -1.632 0.014 -6.230 2 -15.000 -1.6
17、32 -0.077 -6.097 3 -30.000 -1.634 -0.163 -5.590 4 -45.000 -1.637 -0.240 -4.730 5 -60.000 -1.641 -0.301 -3.553 6 -75.000 -1.646 -0.343 -2.117 7 -90.000 -1.651 -0.362 -0.501 8 -105.000 -1.656 -0.357 1.192 9 -120.000 -1.661 -0.327 2.84710 -135.000 -1.666 -0.274 4.33811 -150.000 -1.669 -0.201 5.54312 -1
18、65.000 -1.671 -0.113 6.35613 -180.000 -1.672 -0.016 6.70214 -195.000 -1.672 0.082 6.54315 -210.000 -1.670 0.174 5.89216 -225.000 -1.667 0.253 4.80617 -240.000 -1.663 0.313 3.38318 -255.000 -1.658 0.351 1.74619 -270.000 -1.653 0.364 0.03020 -285.000 -1.647 0.352 -1.63821 -300.000 -1.642 0.317 -3.1482
19、2 -315.000 -1.638 0.261 -4.41423 -330.000 -1.635 0.189 -5.37324 -345.000 -1.632 0.105 -5.98625 -360.000 -1.632 0.014 -6.230(6)线图:3点水平位移,速度,加速度线图四杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线五.机构的动态静力分析5.1六杆铰链式颚式破碎机的静力分析(1)、(2)、(3)步同运动分析1、2、3(4)调用bark函数求9的运动参数形参 n1 n2 n3 k r1 r2 gam t w e p vp ap实参2 0 9 2 0.0 0.625 0.
20、0 t w e p vp ap(5)调用bark函数求10的运动参数形参 n1 n2 n3 k r1 r2 gam t w e p vp ap实参4 0 10 3 0.0 0.5 0.0 t w e p vp ap(6)调用bark函数求8的运动参数形参 n1 n2 n3 k r1 r2 gam t w e p vp ap实参3 0 8 4 0.0 0.575 0.0 t w e p vp ap(7)调用bark函数求7的运动参数形参 n1 n2 n3 k r1 r2 gam t w e p vp ap实参6 0 7 5 0.0 0.98 0.0 t w e p vp ap(8)调用bark函
21、数求11的运动参数形参 n1 n2 n3 k r1 r2 gam t w e p vp ap实参6 0 11 5 0.0 0.6 0.0 t w e p vp ap(9)调用rrrf对4、5杆件组成的rrr杆组进行静力分析形参n1 n2 n3 ns1 ns2 nn1 nn2 nexf k1 k2 t w e p vp ap实参3 6 5 8 7 0 11 11 4 5 t w e p vp ap(10)调用rrrf对2、3杆组成的rrr杆组进行静力分析形参n1 n2 n3 ns1 ns2 nn1 nn2 nexf k1 k2 t w e p vp ap实参2 4 3 9 10 0 3 0 2
22、3 t w e p vp ap(11)调用barf对主动件1进行静力分析形参 n1 ns1 nn1 k1 p ap e fr tb实参1 1 2 1 p ap e fr tb(12)程序:对质心的运动分析,对固定铰链的静态动力分析,主动反力偶#includegraphics.h#includesubk.c#includesubf.c#includedraw.c main() static double p202,vp202,ap202,del;t10,w10,e10, static double tbdraw370,tb1draw370;fr3draw370,sita1370,fr1draw3
23、70; static double sita2370,fr2draw370,sita3370,we1,we2,we3,we4,we5; static double fr202,fe202,tb,tb1,fr1,bt1,fr4,bt4,fr6,bt6; static int ic;double pi,dr;int i;FILE *fp; char *m=tb,tb1,fr1,fr4,fr6; sm1=0.0;sm2=500;sm3=200;sm4=200;sm5=900;del=15; sj1=0.0;sj2=25.5;sj3=9;sj4=9;sj5=50; t1=0.0;w1=-17.8;e1
24、=0.0;t4=0.0;t6=90.0;w6=0.0; e6=0.0;pi=4.0*atan(1.0);dr=pi/180.0;t6=90.0*dr; p11=0.0;p12=0.0;p41=0.94;p42=-1.0; p61=-1.0;p62=0.85; printf(n The Kinet0-static Analysis of a six-bar Linkase.n); printf(No HETA1 fr1 sita1 fr4 sita2 fr7 sita3 tb tb1n); printf( deg N radian N radian N radian N.m N.mn); if(
25、fp=fopen(filel20133098,w)=NULL) printf(Cant open this file.n); exit(0); fprintf(fp,n The Kinet0-static Analysis of a six-bar Linkase.n); fprintf(fp,No HETA1 fr1 sita1 fr4 sita2 fr7 sita3 tb tb1n); fprintf(fp, deg N radian N radian N radian N.m N.mn); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(-i*del)
26、*dr; bark(1,2,0,1,0.1,0.0,0.0,t,w,e,p,vp,ap); rrrk(-1,2,4,3,2,3,1.25,1.0,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,1.15,1.96,t,w,e,p,vp,ap); bark(2,0,9,2,0.0,0.625,0.0,t,w,e,p,vp,ap); bark(4,0,10,3,0.0,0.5,0.0,t,w,e,p,vp,ap); bark(3,0,8,4,0.0,0.575,0.0,t,w,e,p,vp,ap); bark(6,0,7,5,0.0,0.98,0.0,t,w,e,p,vp,ap)
27、; bark(6,0,11,5,0.0,0.6,0.0,t,w,e,p,vp,ap); rrrf(3,6,5,8,7,0,11,11,4,5,p,vp,ap,t,w,e,fr); rrrf(2,4,3,9,10,0,3,0,2,3,p,vp,ap,t,w,e,fr); barf(1,1,2,1,p,ap,e,fr,&tb); fr1=sqrt(fr11*fr11+fr12*fr12); bt1=atan2(fr12,fr11); fr4=sqrt(fr41*fr41+fr42*fr42); bt4=atan2(fr42,fr41); fr6=sqrt(fr61*fr61+fr62*fr62);
28、 bt6=atan2(fr62,fr61); we1=-(ap11*vp11+(ap12+9.81)*vp12)*sm1-e1*w1*sj1; we2=-(ap91*vp91+(ap92+9.81)*vp92)*sm2-e2*w2*sj2; we3=-(ap101*vp101+(ap102+9.81)*vp102)*sm3-e3*w3*sj3; we4=-(ap81*vp81+(ap82+9.81)*vp82)*sm4-e4*w4*sj4; extf(p,vp,ap,t,w,e,11,fe); we5=-(ap71*vp71+(ap72+9.81)*vp72)*sm5-e5*w5*sj5+fe
29、111*vp111+fe112*vp112; tb1=-(we1+we2+we3+we4+we5)/w1; printf(n%2d %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr6/dr,bt6/dr,tb,tb1); fprintf(fp,n%2d %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr6/d
30、r,bt6/dr,tb,tb1); tbdrawi=tb;tb1drawi=tb1;fr1drawi=fr6; sita1i=bt6;fr2drawi=fr6;sita2i=bt6;fr3drawi=fr6;sita3i=bt6; if(i%16)=0)getch(); fclose(fp); getch(); draw2(del,tbdraw,tb1draw,ic,m); draw3(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic,m); extf(p,vp,ap,t,w,e,nexf,fe) double p202,vp202,ap202,
31、t10,w10,e10,fe202; int nexf; double pi,dr; pi=4.0*atan(1.0); dr=pi/180.0; if(w50) fenexf1=(-t1/dr-90.0)*(85000.0/182.0)*cos(-t5-pi/2); fenexf2=-(-t1/dr-90.0)*(85000.0/182.0)*sin(-t5-pi/2); elsefenexf1=0;fenexf2=0; (13)数据:6点固定铰链力矢;主动件平衡力偶 The Kineto-static Analysis of a Six-bar Linkase NO THETA1 fr6
32、sita6 tb tb1 deg N deg N.m N.m 1 0.000 9904.580 77.690 534.273 534.273 2 -5.000 10027.035 79.096 703.325 703.325 3 -10.000 10141.706 80.761 873.278 873.278 4 -15.000 10248.086 82.670 1038.104 1038.104 5 -20.000 10346.409 84.798 1191.197 1191.197 6 -25.000 10437.556 87.113 1325.633 1325.633 7 -30.000
33、 10522.852 89.576 1434.513 1434.513 8 -35.000 10603.782 92.138 1511.359 1511.359 9 -40.000 10681.663 94.743 1550.551 1550.551 10 -45.000 10757.314 97.329 1547.760 1547.760 11 -50.000 10830.805 99.833 1500.331 1500.331 12 -55.000 10901.317 102.191 1407.585 1407.585 13 -60.000 10967.175 104.339 1270.987 1270.987 14 -65.000 11026.038 106.222 1094.172 1094.172 15 -70.000 11075.232 107.792 882.793 882.793 16 -75.000 11112.158 109.009 644.228 644.228 17 -80.000 11134.700 109.847 387.143 387.143