《成稿机械原理课程设计说明书1铰链式颚式破碎机方案分析(共22页).doc》由会员分享,可在线阅读,更多相关《成稿机械原理课程设计说明书1铰链式颚式破碎机方案分析(共22页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上机械原理课程设计铰链式颚式破碎机指导教师:毕艳丽设计: 王洪瑞 翟国胜 袁岩 班级:09-船修三班学号:日期:目录一机构简介与设计数据3二图解法连杆机构运动分析及动态静力分析5三杆组法颚式破碎机的运动分析及动态静力分析 11四飞轮设计21五主要收获 22六参考文献 22颚式破碎机一、机构简介与设计数据(1)机构简介 颚式破碎机是一种破碎矿石的机械,如图所示,机器经皮带(图中未画)使曲柄2顺时针回转,然后通过构件3,4,5是动颚板6向左摆向固定于机架1上的定额板7时,矿石即被轧碎;当动颚板6向右摆定颚板时,被轧碎的矿石即下落。 由于机器在工作过程中载荷变化很大,将影响曲
2、柄和电动机的匀速运转。为了减小主轴速度的波动和电动机的容量,在O2轴的两端各装一个大小和重量完全相同的飞轮,其中一个兼作皮带轮用。图1.1 六杆铰链式破碎机 图1.2 工艺阻力(2)设计数据设计内容连杆机构的远动分析 符号n2Lo2AL1L2h1h2lABlO4BLBCLo6c单位r/minmm数据170100100094085010001250100011501960连杆机构远动的动态静力分析 飞轮转动惯量的确定 IO6DG3JS3G4JS4G5JS5G6JS6mmNKg m2NKg m2NKg m2NKg m2600500025.520009200099000500.15 2.2 设计要求
3、试比较两个方案进行综合评价。主要比较以下几方面:1. 进行运动分析,画出颚板的角位移、角速度、角加速度随曲柄转角的变化曲线。2. 进行动态静力分析,比较颚板摆动中心运动副反力的大小及方向变化规律,曲柄上的平衡力矩大小及方向变化规律。3. 飞轮转动惯量的大小。二、连杆机构的运动分析:(一)特殊位置(1)曲柄在1位置时,构件2水平时, 以A为圆心,以1250mm为半径画圆,以O4为圆心,以1000mm为半径画圆,交于B点。以B为圆心1150mm为半径画圆, 再以O6 为圆心,以1960mm为半径画圆,在圆O6和圆B的交点为C。据此一位置各构件位置确定。1 连杆机构速度分析(1)位置12=pn/30
4、=3.14X170/30=17.8rad/sVB = VA + VBAX AO22 XO4B AO2 ABVA= AO22=0.1X17.8=1.78m/s 根据速度多边形,按比例尺=0.05(m/S)/mm,在图2中量取VB和VBA的长度数值:则VB=36.22X=1.81m/sVBA=8.99X=0.45m/sVC = VB + VCBX XO6C BC 根据速度多边形, 按比例尺=0.05(m/S)/mm,在图3中量取VC 和VCB的长度数值:VC=13.35=0.67m/sVCB=34.26=1.71m/s2加速度分析: 2=17.8rad/s a B= anB04 + atB04 =
5、 aA4 + anBA + atAB X X /BO4 BO4 /AO2 /BA AB aA= AO2 22 =31.7m/s2anBA= VBA * VBA/ BA =0.33m/s2anB04 = VB * VB /BO4 =3.28 m/s2 根据加速度多边形图按比例尺=0.1(m/s2)/mm量取atB04 atAB和a B 值的大小: atB04 =be=2.32 m/s2 atAB =ba =27.98m/s2a B=pb =28.00 m/s2aC= an06C+ at06C= aB + at CB+ an CB X X /O6C O6C CB /CB根据加速度多边形按图3按比例
6、尺=0.1(m/s2)/mm量取aC、at06C和at CB数值:aC =pe =6.47m/s2at06C=pc =6.46m/s2at CB=bc =1.43m/s2 3.连杆机构的动态静力分析对各受力杆件列力平衡方程和力矩平衡方程杆6 Fry+F56X-F16x=m6a6x F16y-Fry-F56y+G6=m6a6y 对O6取矩 F56xl6x+1/2G6l6x+F56yl6y+1/2Frxl6y=J66的方程Fi6=1/2ao6c*m6=2968.7N Mi6=ao6ct/Lo6c*Js6=165.26N.M Fr16x+Fr*cos(4.96)+Fr56x-Fi6*cos(2.95
7、)=0 Fr16y-Frsin(4.96)+Fi6*sin(2.95)+Fr56y-G6=0Fr*Lcd+1/2Lo6c*G6*sin(4.96)+Fr56x*Lo6c*cos(4.96)-Mi6-Fr56y*Lo6c*sin(4.96)=0杆5 F45x-F65x=m5a5x F65y-F45y+G5=m5a5y对B点取矩 F65xl5y+1/2G5l5x-F65yl5x=J55的方程Fi5=as5*m5=660.9N Mi5=acbt/Lcb*Js5=50.6NMFr45x-Fr56x-Fi5*cos(1.1)=0Fr45y-Fr56y+Fi5sin(1.1)-G5=01/2Fi5*Lbc
8、*sin( -7.26)-Mi5-Fr56y*Lbc*cos(7.260)-Fr56x*Lbc*sin(7.26)-1/2G5*Lbc*cos(7.29)=0 杆4 F14x-F43x=m4a4x F14y-F43y+G4=m4a4y对B取矩 F14xl4x-1/2G4l4x-F14yl4y=J44的方程Fi4=as4*m4=424.9N Mi4=ao4bt/Lo4b*Js4=20.87NMFr14xFr45xFr43xFi4*cos(20.9)=0Fr14yFr45yFr43y+Fi4*sin(20.9)G4=01/2Fi4*Lo4b*sin(35.26)+(Fr45x+Fr43x)*Lo4
9、b*sin(14.36)+Mi4-(Fr45y+Fr43y+1/2G4)*Lo4b*cos(14.36)=0 杆3 -F23x-F43x=m3a3x F23y-F43y+G3=m3a3y对B取矩 F23xl3x+1/2G3l3x-F23yl3y=J33的方程Fi3=as3*m3=709.26N Mi3=aabt/Lab*Js3=570.87NMFr23x+Fr43xFi3*cos(5.11)=0Fr23y+Fr43yG3+Fi3*sin(5.11)=01/2Fi3Lab*cos()+1/2G3*Lab*sin(3.27)-Mi3-Fr43y*Lab*sin(3.27)-Fr43x*Lab*co
10、s(3.27)=0 2的方程Fr12x-Fr23x=0Fr12y-Fr23y-G2=0当曲柄处于180。的时候, 所以通过列矩阵求解 F12y =21230.3N F12x= 1578.42 N F32x=-4684N F32y =17812N F43x=6451N F43y =12970N F14x =-26061N F14y=-5790N F45x = -32915N F45y = 5332N F56x =-33575N F56y=3332 N F16x =-5335N F16y =20434N 三 杆组法颚式破碎机的运动分析及动态静力分析 机构的结构分析六杆铰链式粉碎机拆分为机架和主动件
11、,构件组成的RRR杆组,构件组成的RRR杆组。+(1)调用bark函数对主动件进行运动分析。见表4.1。表4.1形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap(2)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.2。表4.2形式参数mn1n2n3k1k2r1r2twepvpap实值142332r34r23twepvpap(3)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.3。表4.3形式参数mn1n2n3k1k2r1r2twepvpap实值136545,r35r56twepvpap(4)程序清单:#include
12、 graphics.h#include subk.c#include draw.cmain() static double p202,vp202,ap202; static double t10,w10,e10,del; static double pdraw370,vpdraw370,apdraw370,wdraw370; static int ic; double r12,r23,r34,r35,r56; double pi,dr; int i; FILE *fp; r12=0.1; r34=1.0; r23=1.250; r35=1.15; r56=1.96; p11=0.0; p12=
13、0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; pi=4.0*atan(1.0); dr=pi/180.0; t1=0.0; w1=-17*pi/3; e1=0.0; del=15; printf(n The Kinematic Parameters of Point6n); printf(No THETA1 t5 w5 e5n); printf( deg rad rad/s rad/s/sn); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(-i)*del*dr-90*dr; bark(1,2,0,1,r12,0
14、.0,0.0,t,w,e,p,vp,ap); rrrk(1,4,2,3,3,2,r34,r23,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); wdrawi=t1/dr; pdrawi=t5; vpdrawi=w5; apdrawi=e5; if(fp=fopen(六杆运动.txt,w)=NULL) printf(Cant open this file./n); exit(0); for(i=0;i=ic;i+)printf(%12.3f %12.3f %12.3f %12.3fn,wdrawi,pdrawi,vpdrawi,a
15、pdrawi);fprintf(fp,%e %e %e %en,wdrawi,pdrawi,vpdrawi,apdrawi); if(i%18)=0)getch(); fclose(fp); getch(); draw1(del,pdraw,vpdraw,apdraw,ic);运算结果:The Kinematic Parameters of Point5THETA1 t5 w5 e5deg rad rad/s rad/s/s-9.00000e+01 -1.63238e+00 -1.37677e-03 -1.01835e+01-1.05000e+02 -1.63348e+00 -1.45454e
16、-01 -9.16482e+00-1.20000e+02 -1.63654e+00 -2.64803e-01 -6.90406e+00-1.35000e+02 -1.64108e+00 -3.45263e-01 -3.98081e+00-1.50000e+02 -1.64647e+00 -3.81662e-01 -1.00778e+00-1.65000e+02 -1.65210e+00 -3.77125e-01 1.51876e+00-1.80000e+02 -1.65741e+00 -3.40696e-01 3.29712e+00-1.95000e+02 -1.66202e+00 -2.84
17、290e-01 4.23741e+00-2.10000e+02 -1.66573e+00 -2.19724e-01 4.43601e+00-2.25000e+02 -1.66849e+00 -1.56345e-01 4.12137e+00-2.40000e+02 -1.67036e+00 -9.95969e-02 3.58405e+00-2.55000e+02 -1.67146e+00 -5.06328e-02 3.10541e+00-2.70000e+02 -1.67188e+00 -6.91431e-03 2.89782e+00-2.85000e+02 -1.67166e+00 3.644
18、86e-02 3.06340e+00-3.00000e+02 -1.67078e+00 8.48847e-02 3.57078e+00-3.15000e+02 -1.66912e+00 1.42323e-01 4.24740e+00-3.30000e+02 -1.66655e+00 2.09172e-01 4.79134e+00-3.45000e+02 -1.66295e+00 2.80705e-01 4.81744e+00-3.60000e+02 -1.65832e+00 3.46484e-01 3.95596e+00-3.75000e+02 -1.65286e+00 3.91648e-01
19、 2.00206e+00-3.90000e+02 -1.64698e+00 4.00498e-01 -9.32100e-01-4.05000e+02 -1.64131e+00 3.61788e-01 -4.35539e+00-4.20000e+02 -1.63658e+00 2.73734e-01 -7.50567e+00-4.35000e+02 -1.63346e+00 1.46198e-01 -9.61223e+00-4.50000e+02 -1.63238e+00 -1.37677e-03 -1.01835e+01五.机构的动态静力分析5.1六杆铰链式颚式破碎机的静力分析(1)调用bar
20、k函数对主动件进行运动分析。见表4.1。(2)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.2。(3)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.3。(4)求各构件的质心7、8、9、10点及矿石破碎阻力作用点11点的运动参数。见表5.1表5.5。表5.1 7点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值20720.0r270.0twepvpap表5.2 8点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值40830.0r480.0twepvpap表5.3 9点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值3
21、0940.0r390.0twepvpap表5.4 10点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值601050.0r6100.0twepvpap表5.5 11点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值601150.0r6110.0twepvpap(5)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.6。表5.6形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwefr实值3659100111145pvpaptwefr(6)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.7。表5.7形式参数n1n2n3ns1ns
22、2nn1nn2nexfk1k2pvpaptwefr实值4238730032pvpaptwefr(7)调用barf对主动件进行静力分析。见表5.8。表5.8形式参数n1ns1nn1k1papefrtb实值1121papefr&tb程序清单#include graphics.h#include subk.c#include subf.c#include draw.cmain() static double p202,vp202,ap202,del; static double t10,w10,e10; static double sita1370,fr1draw370,sita2370,fr2dr
23、aw370,sita3370,fr3draw370,tbdraw370,tb1draw370; static double fr202,fe202; static int ic; double r12,r23,r34,r35,r56; double r27,r48,r39,r610,r611; int i; double pi,dr; double fr1,bt1,fr4,bt4,fr6,bt6,we1,we2,we3,we4,we5,tb,tb1; FILE*fp; sm1=0.0;sm2=500.0;sm3=200.0;sm4=200.0;sm5=900.0; sj1=0.0;sj2=25
24、.5;sj3=9.0;sj4=9.0;sj5=50.0; r12=0.1; r23=1.25; r34=1.0; r35=1.15;r56=1.96; r27=r23/2; r48=r34/2; r39=r35/2; r610=r56/2; r611=0.6; pi=4.0*atan(1.0); dr=pi/180.0; w1=-170*2*pi/60; e1=0.0; del=15; p11=0.0; p12=0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; printf(n The Kineto-static Analysis of a Six-ba
25、r Linkasen);printf( NO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1n);printf( (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) n); if(fp=fopen(六杆受力.doc,w)=NULL) printf(Cant open this file./n); exit(0); fprintf(fp,n The Kineto-static Analysis of a Six-bar Linkasen);fprintf(fp, NO THETA1 FR1 BT1 FR4 BT4 F
26、R6 BT6 TB TB1n );fprintf(fp, (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) n ); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(-i)*del*dr; bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(1,4,2,3,3,2,r34,r23,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); bark(2,0,7,2,0.0,r27,0.0,t,w,e,p,vp,a
27、p); bark(4,0,8,3,0.0,r48,0.0,t,w,e,p,vp,ap); bark(3,0,9,4,0.0,r39,0.0,t,w,e,p,vp,ap); bark(6,0,10,5,0.0,r610,0.0,t,w,e,p,vp,ap); bark(6,0,11,5,0.0,r611,0.0,t,w,e,p,vp,ap); rrrf(3,6,5,9,10,0,11,11,4,5,p,vp,ap,t,w,e,fr); rrrf(4,2,3,8,7,3,0,0,3,2,p,vp,ap,t,w,e,fr); barf(1,1,2,1,p,ap,e,fr,&tb); fr1=sqrt
28、(fr11*fr11+fr12*fr12); bt1=atan2(fr12,fr11); fr4=sqrt(fr41*fr41+fr42*fr42); bt4=atan2(fr42,fr41); fr6=sqrt(fr61*fr61+fr62*fr62); bt6=atan2(fr62,fr61); we1=-(ap11*vp11+(ap12+9.81)*vp12)*sm1-e1*w1*sj1; we2=-(ap71*vp71+(ap72+9.81)*vp72)*sm2-e2*w2*sj2; we3=-(ap81*vp81+(ap82+9.81)*vp82)*sm3-e3*w3*sj3; we
29、4=-(ap91*vp91+(ap92+9.81)*vp92)*sm4-e4*w4*sj4; extf(p,vp,ap,t,w,e,11,fe); we5=-(ap101*vp101+(ap102+9.81)*vp102)*sm5-e5*w5*sj5+fe111*vp111+fe112*vp112; tb1=-(we1+we2+we3+we4+we5)/w1; printf(%3d %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1fn,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr6,bt6/dr,tb1,tb1);
30、fprintf(fp,%1d %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1fn,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr6,bt6/dr,tb1,tb1); tbdrawi=tb; tb1drawi=tb1; fr1drawi=fr1;sita1i=bt1; fr2drawi=fr4;sita2i=bt4; fr3drawi=fr4;sita3i=bt4; if(i%16)=0)getch(); fclose(fp); getch(); draw2(del,tbdraw,tb1draw,ic); draw3
31、(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic); getch();#includemath.hextf(p,vp,ap,t,w,e,nexf,fe) double p202,vp202,ap202,t10,w10,e10,fe202; double pi,dr; pi=4.0*atan(1.0); dr=pi/180.0; if(w50) fenexf1=(-t1/dr-90.0)*(85000.0/182.0)*cos(-t5-pi/2); fenexf2=-(-t1/dr-90.0)*(85000.0/182.0)*sin(-t5-pi
32、/2); elsefenexf1=0;fenexf2=0; 运行结果: The Kineto-static Analysis of a Six-bar LinkaseNO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1 (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) The Kineto-static Analysis of a Six-bar Linkase NO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1 (deg.) (N) (deg.) (N) (deg.) (N) (d
33、eg.) (N.m) (N.m) 1 0.0 4442.5 -157.9 2351.4 10.3 1669.1 5.0 534.3 534.32 -15.0 4901.8 144.8 2892.4 7.9 899.3 17.6 1038.1 1038.13 -30.0 8299.6 117.0 3106.8 5.1 488.2 138.1 1434.5 1434.54 -45.0 12072.4 106.5 3110.5 1.6 1814.6 171.7 1547.8 1547.85 -60.0 15119.0 101.3 3165.4 -1.1 3120.1 178.1 1271.0 127
34、1.06 -75.0 16826.9 97.9 3539.8 -0.3 4005.1 -179.3 644.2 644.27 -90.0 16909.1 94.8 4392.1 3.7 4247.2 -178.5 -144.6 -144.68 -105.0 3361.2 89.9 12148.1 14.6 9873.8 109.0 -883.8 -883.89 -120.0 11111.1 -79.8 19692.7 16.5 18718.3 95.0 -1407.8 -1407.810 -135.0 25758.8 -80.7 26713.5 16.8 27580.9 89.3 -1626.
35、3 -1626.311 -150.0 40085.4 -81.1 33069.4 16.2 36047.5 86.2 -1559.2 -1559.212 -165.0 53732.5 -81.7 38768.2 15.3 43999.9 84.4 -1292.9 -1292.913 -180.0 66530.2 -82.5 43954.6 14.1 51469.2 83.3 -931.2 -931.214 -195.0 78457.1 -83.7 48874.0 12.8 58577.5 82.9 -565.2 -565.215 -210.0 89592.8 -85.1 53826.3 11.6 65486.0 82.7 -261.0 -261.016 -225.0 .8 -86.7 59118.9 10.5 72355.8 82.8 -57.6 -57.617 -240.0 .7 -88.4 65024.0 9.6 79329.5 83.0 32.3 3