《包装件的振动 精.ppt》由会员分享,可在线阅读,更多相关《包装件的振动 精.ppt(61页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、包装件的振动 第1页,本讲稿共61页三、两自由度线性系统振动 一、包装件振动问题概述 四、多自由度线性系统振动 二、单自由度线性系统振动 五、弹性体及刚体产品的振动分析*授课知识点第2页,本讲稿共61页-从广义上讲,如果表征一种运动的物理量作时而增大时而减小的反复变化,就可以称这种运动为振动一、基本概念-振动是自然界最普遍的现象之一-各种物理现象,诸如声、光、热等都包含振动-如果变化的物理量是一些机械量或力学量,例如物体的位移、速度、加速度、应力及应变等等,这种振动便称为机械振动 第一节 概述-各个不同领域中的现象虽然各具特色,但往往有着相似的数学力学描述。正是在这个共性基础上,有可能建立某种
2、统一的理论来处理各种振动问题第3页,本讲稿共61页(1)心脏的搏动、耳膜和声带的振动,(2)桥梁和建筑物在风和地震作用下的振动,(3)飞机和轮船航行中的振动,(4)机床和刀具在加工时的振动(5)包装件在运输承受的振动自然界的振动.exe第一节 概述第4页,本讲稿共61页二、振动系统及形式分类-通常的研究对象被称作系统系统(输入)激励(输出)响应它可以是一个零部件、一台机器或者一个完整的工程结构等-外部激振力等因素称为激励(输入)-系统发生的振动称为响应(输出)第一节 概述第5页,本讲稿共61页第一类:已知激励和系统,求响应 第二类:已知激励和响应,求系统 第三类:已知系统和响应,求激励 系统(
3、输入)激励(输出)响应振动问题按这三个环节可分为三类问题第一节 概述第6页,本讲稿共61页第一类:已知激励和系统,求响应 动力响应分析 主要任务在于验算结构、产品等在工作时的动力响应(如变形、位移、应力等)是否满足预定的安全要求和其它要求在产品设计阶段,对具体设计方案进行动力响应验算,若不符合要求再作修改,直到达到要求而最终确定设计方案,这一过程就是所谓的振动设计 正问题系统(输入)激励(输出)响应?第一节 概述第7页,本讲稿共61页第二类:已知激励和响应,求系统系统识别,系统辨识 求系统,主要是指获得对于系统的物理参数(如质量、刚度和阻尼系数等)和系统关于振动的固有特性(如固有频率、主振型等
4、)的认识 以估计物理参数为任务的叫做物理参数辨识,以估计系统振动固有特性为任务的叫做模态参数辨识或者试验模态分析第一个逆问题 系统(输入)激励(输出)响应?第一节 概述第8页,本讲稿共61页第三类:已知系统和响应,求激励环境预测 例如:为了避免产品在公路运输中的损坏,需要通过实地行车记录汽车振动和产品振动,以估计运输过程中是怎样的一种振动环境,运输过程对于产品是怎样的一种激励,这样才能有根据地为产品设计可靠的减震包装 第二个逆问题 系统(输入)激励(输出)响应?第一节 概述第9页,本讲稿共61页系统(输入)激励(输出)响应?第一类:已知激励和系统,求响应:动力响应分析,正问题 第二类:已知激励
5、和响应,求系统:系统辨识,第一个逆问题 第三类:已知系统和响应,求激励:环境预测,第二个逆问题这三类问题基本囊括了现实振动中的所有问题这三类问题基本囊括了现实振动中的所有问题第一节 概述第10页,本讲稿共61页q 振动分类按运动微分方程的形式可分为:描述其运动的方程为线性微分方程,相应的系统称为线性系统。线性系统的一个重要特性是线性叠加原理成立描述其运动的方程为非线性微分方程,相应的系统称为非线性系统。对于非线性振动,线性叠加原理不成立 线性振动非线性振动第一节 概述第11页,本讲稿共61页按激励的有无和性质,振动可以分为:固有振动自由振动强迫振动随机振动自激振动参数振动 无激励时系统所有可能
6、的运动集合(不是现实的振动,仅反映系统关于振动的固有属性)激励消失后系统所做的振动(现实的振动)系统在外部激励作用下所做的振动 系统在非确定性的随机激励下所做的振动,例如行驶在公路上的汽车的振动 系统受其自身运动诱发出来的激励作用而产生和维持的振动,例如提琴发出的乐声,切削加工的高频振动,机翼的颤振等 激励以系统本身的参数随时间变化的形式出现的振动,例如秋千被越荡越高。秋千受到的激励以摆长随时间变化的形式出现,而摆长的变化由人体的下蹲及站立造成第一节 概述第12页,本讲稿共61页三、包装件振动模型与运动方程(1)连续系统模型(无限多自由度系统,分布参数系统)(多自由度系统,单自由度系统)数学工
7、具:偏微分方程-振动系统三要素:质量,刚度,阻尼质量是感受惯性(包括转动惯量)的元件,刚度是感受弹性的元件,阻尼是耗能元件-描述振动系统的两类力学模型:(2)离散系统模型 结构参数(质量,刚度,阻尼等)在空间上连续分布数学工具:常微分方程结构参数为集中参量第一节 概述第13页,本讲稿共61页 m包装物的位移用x(t)表示,外包装的运动位移用y(t)表示。当包装件受到一个外界激励时,包装物将绕静平衡位置来回振动,此时包装物所受的弹性力为-k(x-y)+k,阻尼力为,重力为-mg。由于 是因包装物重量mg引起的衬垫静位移,产生大小相等方向相反的支承反力,即k=mg。根据牛顿第二定律,此时包装物的运
8、动方程为:第一节 概述第14页,本讲稿共61页第二节 单自由度线性系统振动一、单自由度线性系统无阻尼自由振动不计阻尼和激励,则方程变为:m因为质量m和弹性系数k都是正数,所以式中k/m恒为正,于是可以引入记号这是一个二阶常系数齐次常微分方程,它的特征方程为第15页,本讲稿共61页这特征方程的两个根为于是,微分方程的解就是由Euler(欧拉)关系所以第二节 单自由度线性系统振动 第16页,本讲稿共61页令则对时间t求导一次,得振体速度代入初始条件(1),得所以第二节 单自由度线性系统振动 第17页,本讲稿共61页则得振体运动方程:令:第二节 单自由度线性系统振动 播放谐振动.exe动画第18页,
9、本讲稿共61页零初始条件下的自由振动:无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 为振动频率的简谐振动,并且永无休止 初始条件:固有频率从左到右:时间位置第二节 单自由度线性系统振动 第19页,本讲稿共61页动力学方程:或写为:固有频率相对阻尼系数 mkc建立平衡位置,并受力分析mx0第二节 单自由度线性系统振动 二、单自由度线性系统有阻尼自由振动第20页,本讲稿共61页动力学方程:令:特征方程:特征根:三种情况:欠阻尼 过阻尼临界阻尼第二节 单自由度线性系统振动 第21页,本讲稿共61页第一种情况:欠阻尼特征根:阻尼固有频率有阻尼的自由振动频率 振动解:c1、c2:初始条件决定两个复
10、数根第二节 单自由度线性系统振动 第22页,本讲稿共61页设初始条件:则:或:第二节 单自由度线性系统振动 第23页,本讲稿共61页欠阻尼振动解:阻尼固有频率阻尼自由振动周期:T0:无阻尼自由振动的周期阻尼自由振动的周期大于无阻尼自由振动的周期 第二节 单自由度线性系统振动 第24页,本讲稿共61页欠阻尼响应图形振动解:欠阻尼是一种振幅逐渐衰减的振动=0 1时间位置第二节 单自由度线性系统振动 第25页,本讲稿共61页评价阻尼对振幅衰减快慢的影响与 t 无关,任意两个相邻振幅之比均为 衰减振动的频率为,振幅衰减的快慢取决于,这两个重要的特征反映在特征方程的特征根的实部和虚部 减幅系数定义为相邻
11、两个振幅的比值:第二节 单自由度线性系统振动 第26页,本讲稿共61页减幅系数:含有指数项,不便于工程应用实际中常采用对数衰减率:第二节 单自由度线性系统振动 第27页,本讲稿共61页第二种情况:过阻尼动力学方程:特征方程:特征根:特征根:两个不等的负实根 振动解:c1、c2:初始条件决定第二节 单自由度线性系统振动 第28页,本讲稿共61页过阻尼振动解:设初始条件:则:一种按指数规律衰减的非周期蠕动,没有振动发生 响应图形第二节 单自由度线性系统振动 第29页,本讲稿共61页第三种情况:临界阻尼动力学方程:特征方程:特征根:特征根:二重根振动解:c1、c2:初始条件决定第二节 单自由度线性系
12、统振动 第30页,本讲稿共61页振动解:临界阻尼则:也是按指数规律衰减的非周期运动,但比过阻尼衰减快些 临界阻尼系数设初始条件:响应图形第二节 单自由度线性系统振动 第31页,本讲稿共61页临界也是按指数规律衰减的非周期运动,但比过阻尼衰减快些 三种阻尼情况比较:欠阻尼 过阻尼 临界阻尼欠阻尼是一种振幅逐渐衰减的振动过阻尼是一种按指数规律衰减的非周期蠕动,没有振动发生 过阻尼临界阻尼欠阻尼txO第二节 单自由度线性系统振动 第32页,本讲稿共61页小结:动力学方程欠阻尼过阻尼临界阻尼按指数规律衰减的非周期蠕动 按指数规律衰减的非周期运动,比过阻尼衰减快 振幅衰减振动第二节 单自由度线性系统振动
13、 第33页,本讲稿共61页【例2-1】:阻尼缓冲器静载荷 P 去除后质量块越过平衡位置的位移为初始位移的 10 求:缓冲器的相对阻尼系数 kcx0 x0Pm平衡位置第二节 单自由度线性系统振动 第34页,本讲稿共61页解:由题知 设求导:设在时刻 t1 质量越过平衡位置到达最大位移,这时速度为:kcx0 x0Pm平衡位置第二节 单自由度线性系统振动 第35页,本讲稿共61页由题知 解得:第二节 单自由度线性系统振动 即经过半个周期后出现第一个振幅 x1第36页,本讲稿共61页它表示任一阻尼系数C与临界阻尼CC之比,称之为相对阻力系数或阻尼比。这表时阻尼比与振动系统的三个参数m、k、C都有关,改
14、变其中任何一个都会改变值。第二节 单自由度线性系统振动 因为n=是n和n的分界点,而n是衰减振动,n是衰减过程中振动与不振动的分界线,因此称之为临界阻尼,常作为衡量阻尼大小的基准。通常引用符号:4阻尼比第37页,本讲稿共61页不论值如何改变,只要的值保持1或者1,则系统运下面我们用阻尼比来表示小阻尼振动的周期、频率、减幅系数和对数减幅系数。第二节 单自由度线性系统振动 第38页,本讲稿共61页【例2-2】如果已知某有阻尼系统的W和k及c,从式已求得CC,从=C/Cc算出=0.1,试问任意两相邻振幅之比为多少。解由题意,已知=0.1,因此由于是即阻尼比为0.1的衰减振动,每次振幅只有它前一次振幅
15、的53%,可见不大的阻尼已使振幅减小很快。本例中如以A代表第一个周期时的最大位移,则依次各周期的最大位移如下:第一周期A第五周期0.08A第二周期0.53A第六周期0.04A第三周期0.28A第七周期0.02A第四周期0.15A第八周期0.01A如果本例中频率为1(Hz),那么8秒之内=0.1的小阻尼就能使振幅衰减到开始时的1%。第二节 单自由度线性系统振动 第39页,本讲稿共61页【例2-3】在振动系统中,若k=245(N/cm),C=5.9(N.s/cm),W=98(N),设将物体从平衡位置拉下1cm后无初速地自由释放。求此后振体的运动。第二节 单自由度线性系统振动 故振体将在释放后发生衰
16、减振动。由此可知运动方程为解 因为第40页,本讲稿共61页又当t=0时x0=1(cm),v0=0,因此由:由此求得第二节 单自由度线性系统振动 第41页,本讲稿共61页【例2-4】上例中如果阻尼系数减小到C=0.98(Ns/cm),其余参数都不变,试求对数减幅系数,并估计振幅减小到初值的1%所需的振动次数和时间。第二节 单自由度线性系统振动 设振动j次后振幅减小到初值的1%,则因解 根据式所以由式第42页,本讲稿共61页即不足8次,振幅就减到初值的百分之一。所经时间为第二节 单自由度线性系统振动 即大约一秒就减幅99%。由于因为本题,所以第43页,本讲稿共61页1.有阻尼的强迫振动包装件在运输
17、过程中会受到长时间或瞬时的激励,这种激励所引起的振动称为强迫振动(或受迫振动)第二节 单自由度线性系统振动三、单自由度线性系统强迫振动0kcxm m第44页,本讲稿共61页 这是有阻尼受迫振动微分方程的标准形式,是二阶线性常系数非齐次微分方程,其解由两部分组成 其中x1是对应的齐次方程的通解。在欠阻尼(n)情况下,则 其中x2为方程的特解,设它有下面的形式 第二节 单自由度线性系统振动第45页,本讲稿共61页解之得:于是微分方程的通解为:衰减振动的解 受迫振动的解0强迫响应全响应第二节 单自由度线性系统振动第46页,本讲稿共61页有阻尼单自由度系统外部作用力规律:假设系统固有频率:从左到右:第
18、二节 单自由度线性系统振动第47页,本讲稿共61页引入:引入:第二节 单自由度线性系统振动第48页,本讲稿共61页01 2 3012345第二节 单自由度线性系统振动第49页,本讲稿共61页0 1 2 3090180曲线族相频特性曲线第二节 单自由度线性系统振动第50页,本讲稿共61页幅频特性与相频特性1、0的附近区域(低频区或弹性控制区),1,0,响应与激励同相;对于不同的 值,曲线密集,阻尼影响不大。2、1的区域(高频区或惯性控制区),0,响应与激励反相;阻尼影响也不大。第二节 单自由度线性系统振动第51页,本讲稿共61页幅频特性与相频特性 幅频特性与相频特性3、1的附近区域(共振区),急
19、剧增大并在 1略为偏左处有峰值。通常将1,即 n称为共振频率。阻尼影响显著且阻尼愈小,幅频响应曲线愈陡峭。在相频特性曲线图上,无论阻尼大小,1时,总有,/2,这也是共振的重要现象。第二节 单自由度线性系统振动第52页,本讲稿共61页例2-5在上图所示的振动系统中,已知弹簧常数k=4.38N/mm,物块质量m=18.2kg,粘滞阻尼系数c=0.149Ns/mm,干扰力的力幅F0=44.5N,干扰力频率=15rad/s,试求振体的受迫振动。解:由已知数据可求得系统的固有频率:静力偏移:第二节 单自由度线性系统振动第53页,本讲稿共61页故振体的受迫振动的运动方程为:阻尼比:频率比:动力放大系数:受
20、迫振动的振幅:相位差:第二节 单自由度线性系统振动第54页,本讲稿共61页2.隔振 隔振分为主动隔振和被动隔振两类。主动隔振是将振源与支持振源的基础隔离开来。被动隔振是将需要防振的物体与振源隔开。包装产品在运输过程中隔振属于被动隔振,例如汽车驶过不平的路面而产生的振动等,图为其简化模型,由于汽车振动将引起搁置在其上的物体的振动,这种激励称为位移激振。kcmx0第二节 单自由度线性系统振动D第55页,本讲稿共61页 设位移激励为:,若取物体的振动位移为x,则作用在物体上的弹簧力为 阻尼力为,系统振动的运动微分方程式:式中:整理得:xfkcmx0设稳态解为:第二节 单自由度线性系统振动第56页,本
21、讲稿共61页 我们将振体振幅与支座振动的振幅的比值(或者输出与输入振幅之比值)定义为传递率Tr,那么:第二节 单自由度线性系统振动第57页,本讲稿共61页0.25 0.5 0.75 1.0 2.0 1 0 1 0 幅频曲线0 190180相频曲线第二节 单自由度线性系统振动第58页,本讲稿共61页例2-6包装件内装产品在静平衡时压缩缓冲衬垫引起的静变形为5.08cm,如果此包装件放在运输车上,支座扰频为=15.7(rad/s),支座扰力幅值为=0.1g,求产品最大位移和最大加速度。解:系统固有频率:负号与表明输入与输出反相。由于输出公式为:题中未计阻尼所以第二节 单自由度线性系统振动第59页,本讲稿共61页产品偏离平衡位置的最大距离为1.42cm,且和车箱底板不同步。车箱底板振幅为:同理,对于输入 有:所以因此,最大输出加速度为:第二节 单自由度线性系统振动第60页,本讲稿共61页谢谢大家第61页,本讲稿共61页