《2023年指对幂函数知识点归纳总结全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年指对幂函数知识点归纳总结全面汇总归纳.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 2.1 指数函数【2.1.1】指数与指数幂的运算(1)根式的概念 如果,1nxa aR xR n,且nN,那么x叫做a的n次方根当n是奇数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示;0 的n次方根是 0;负数a没有n次方根 式子na叫做根式,这里n叫做根指数,a叫做被开方数当n为奇数时,a为任意实数;当n为偶数时,0a 根 式 的 性 质:()nnaa;当n为 奇 数 时,nnaa;当n为 偶 数 时,(0)|(0)nnaaaaaa (2)分数指数幂的概念 正数的正分数指数幂的意义是:(0,mnmnaaam nN且1)n 0
2、的正分数指数幂等于 0 正数的负分数指数幂的意义是:11()()(0,mmmnnnaam nNaa且1)n 0的负分数指数幂没有意义 注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质(0,)rsrsaaaar sR ()(0,)rsrsaaar sR()(0,0,)rrraba babrR【2.1.2】指数函数及其性质(4)指数函数 函数名称 指数函数 定义 函数(0 xyaa且1)a 叫做指数函数 图象 1a 01a xay xy(0,1)O1y xay xy(0,1)O1y 定义域 R 值域(0,)过定点 图象过定点(0,1),即当0 x 时,1y 奇偶性 非奇非偶 单调性 在
3、R上是增函数 在R上是减函数 函数值的 变化情况 1(0)1(0)1(0)xxxaxaxax 1(0)1(0)1(0)xxxaxaxax a变化对 图象的影响 在第一象限内,a越大图象越高;在第二象限内,a越大图象越低 2.2 对数函数【2.2.1】对数与对数运算 (1)对数的定义 若(0,1)xaN aa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数 负数和零没有对数 对数式与指数式的互化:log(0,1,0)xaxNaN aaN(2)几个重要的对数恒等式 log 10a,log1aa,logbaab(3)常用对数与自然对数 常用对数:lg N,即10logN;自
4、然对数:lnN,即logeN(其中2.71828e)(4)对数的运算性质 如果0,1,0,0aaMN,那么 加法:logloglog()aaaMNMN 减法:logloglogaaaMMNN 数乘:loglog()naanMMnR logaNaN loglog(0,)bnaanMM bnRb 换底公式:loglog(0,1)logbabNNbba且 【2.2.2】对数函数及其性质(5)对数函数 函数 名称 对数函数 定义 函数log(0ayx a且1)a 叫做对数函数 图象 1a 01a 定义域 (0,)值域 R 过定点 图象过定点(1,0),即当1x 时,0y 奇偶性 非奇非偶 单调性 在(
5、0,)上是增函数 在(0,)上是减函数 函数值的 变化情况 log0(1)log0(1)log0(01)aaaxxxxxx log0(1)log0(1)log0(01)aaaxxxxxx a变化对 图象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高 (6)反函数的概念 设函数()yf x的定义域为A,值域为C,从式子()yf x中解出x,得式子()xy 如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yf x的反函数,记作1()xfy,习惯上改写成1()yfx(7)反函数的求法
6、xyO(1,0)1x logayxxyO(1,0)1x logayx 确定反函数的定义域,即原函数的值域;从原函数式()yf x中反解出1()xfy;将1()xfy改写成1()yfx,并注明反函数的定义域(8)反函数的性质 原函数()yf x与反函数1()yfx的图象关于直线yx对称 函数()yf x的定义域、值域分别是其反函数1()yfx的值域、定义域 若(,)P a b在原函数()yf x的图象上,则(,)P b a在反函数1()yfx的图象上 一般地,函数()yf x要有反函数则它必须为单调函数 2.3 幂函数(1)幂函数的定义 一般地,函数yx叫做幂函数,其中x为自变量,是常数(2)幂
7、函数的图象 (3)幂函数的性质 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1)单调性:如果0,则幂函数的图象过原点,并且在0,)上为增函数如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当qp(其中,p q互质,p和qZ),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为偶数时,则qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数 图象特征:幂函数,(0,)yxx,当1时,若01x,其图象在直线yx下方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上方,若1x,其图象在直线yx下方