AMOS结构方程模型修正ppt课件.ppt

上传人:飞****2 文档编号:91234766 上传时间:2023-05-24 格式:PPT 页数:49 大小:4.42MB
返回 下载 相关 举报
AMOS结构方程模型修正ppt课件.ppt_第1页
第1页 / 共49页
AMOS结构方程模型修正ppt课件.ppt_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《AMOS结构方程模型修正ppt课件.ppt》由会员分享,可在线阅读,更多相关《AMOS结构方程模型修正ppt课件.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、自制个性化模板主讲:王东峰结构方程模型修正结构方程模型修正Structural Equation Modeling摘要1.修正思路2.修正指标3.案例摘要4.案例修正5.最优展示模型拟合指数和系数显著性检验固然重要,但对于数据分析更重要的是模型结论一模型拟合指数和系数显著性检验固然重要,但对于数据分析更重要的是模型结论一定要具有理论依据,换言之,模型结果要可以被相关领域知识所解释。因此,在进定要具有理论依据,换言之,模型结果要可以被相关领域知识所解释。因此,在进行模型修正时主要考虑修正后的模型结果是否具有现实意义或理论价值,当模型效行模型修正时主要考虑修正后的模型结果是否具有现实意义或理论价值

2、,当模型效果很差时可以参考模型修正指标对模型进行调整。果很差时可以参考模型修正指标对模型进行调整。当模型效果很差时,研究者可以根据初始模型的参数显著性结果和当模型效果很差时,研究者可以根据初始模型的参数显著性结果和Amos提供的模提供的模型修正指标进行模型扩展(型修正指标进行模型扩展(Model Building)或模型限制()或模型限制(Model Trimming)。)。模型扩展是指通过释放部分限制路径或添加新路径,使模型结构更加合理,通常在模型扩展是指通过释放部分限制路径或添加新路径,使模型结构更加合理,通常在提高模型拟合程度时使用;模型限制是指通过删除或限制部分路径,使模型结构更提高模

3、型拟合程度时使用;模型限制是指通过删除或限制部分路径,使模型结构更加简洁,通常在提高模型可识别性时使用。加简洁,通常在提高模型可识别性时使用。Amos提供了两种模型修正指标,其中修正指数(提供了两种模型修正指标,其中修正指数(Modification Index)用于模型扩)用于模型扩展,临界比率(展,临界比率(Critical Ratio)用于模型限制。)用于模型限制。一、修正思路一、修正思路1.修正指数(修正指数(Modification Index)修正指数用于模型扩展,是指对于模型中某个受限制修正指数用于模型扩展,是指对于模型中某个受限制的参数,若容许自由估计(譬如在模型中添加某条路的

4、参数,若容许自由估计(譬如在模型中添加某条路径),整个模型改良时将会减少的最小卡方值。径),整个模型改良时将会减少的最小卡方值。使用修正指数修改模型时,原则上每次只修改一个参使用修正指数修改模型时,原则上每次只修改一个参数,从最大值开始估算。但在实际中,也要考虑让该数,从最大值开始估算。但在实际中,也要考虑让该参数自由估计是否有理论根据。参数自由估计是否有理论根据。若要使用修正指数,需要在若要使用修正指数,需要在Analysis Properties中的中的Output项选择项选择Modification Indices项(如图项(如图-1)。其)。其后面的后面的Threshold for M

5、odification Indices指的是输指的是输出的开始值。出的开始值。二、修正指标二、修正指标图图-1-1 修正指数计算修正指数计算2.临界比率(临界比率(Critical Ratio)临界比率用于模型限制,是计算模型中的每一临界比率用于模型限制,是计算模型中的每一对待估参数(路径系数或载荷系数)之差,并对待估参数(路径系数或载荷系数)之差,并除以相应参数之差的标准差所构造出的统计量。除以相应参数之差的标准差所构造出的统计量。在模型假设下,在模型假设下,CR统计量服从正态分布,所以统计量服从正态分布,所以可以根据可以根据CR值判断两个待估参数间是否存在显值判断两个待估参数间是否存在显著

6、性差异。若两个待估参数间不存在显著性差著性差异。若两个待估参数间不存在显著性差异,则可以限定模型在估计时对这两个参数赋异,则可以限定模型在估计时对这两个参数赋以相同的值。以相同的值。若要使用临界比率,需要在若要使用临界比率,需要在Analysis Properties中的中的Output项选择项选择Critical Ratio for Difference项(如图项(如图-2)。)。二、修正指标二、修正指标图图-2-2 临界比率计算临界比率计算结构方程模型分析过程可以分为模型构建、模型运算、结构方程模型分析过程可以分为模型构建、模型运算、模型修正模型修正以及模型解释以及模型解释四个步骤。下面以

7、一个研究实例作为说明,使用四个步骤。下面以一个研究实例作为说明,使用Amos7软件进行计算,重点阐软件进行计算,重点阐述在实际应用中结构方程模型的修正过程。述在实际应用中结构方程模型的修正过程。三、案例简要三、案例简要1.模型构建的思路模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模型,并以此构建潜变量并建立模型结构。根据构建的理论模型,通过设计问卷对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理后的数据进行分析,并对文中提出的模型进行拟合、修正和解释。过程。2.潜变量和可测变量的设定潜变量和可测变量的设定本文在继承ASCI模型核心概

8、念的基础上,对模型作了一些改进,在模型中增加超市形象。它包括顾客对超市总体形象及与其他超市相比的知名度。它与顾客期望,感知价格和顾客满意有关,设计的模型见表-1。模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量。三、案例简要三、案例简要.三、案例简要三、案例简要超市形象质量期望质量感知感知价值顾客满意顾客抱怨顾客忠诚设计的结构路径图基本路径假设超市形象对质量期望有路径影响质量期望对质量感知有路径影响质量感知对感知价格有路径影响质量期望对感知价格有路径影响感知价格

9、对顾客满意有路径影响顾客满意对顾客忠诚有路径影响超市形象对顾客满意有路径影响超市形象对顾客忠诚有路径影响表表-1设计的结构路径图和基本路径假设设计的结构路径图和基本路径假设2.1.顾客满意模型中各因素的具体范畴顾客满意模型中各因素的具体范畴参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄别调查的结果,模型中各要素需要观测的具体范畴,见表-2。三、案例简要三、案例简要.潜潜变变量量内涵可测变量一一超市形象超市形象根据MARTENSEN在固定电话、移动电话、超市等行业中的调查研究,企业形象是影响总体满意水平的第一要素,这里将超市形象要素列为影响因素,可以从以下几个方面进行观

10、测。某超市总体形象的评价(a1)与其它超市相比的形象(a2)与其它超市相比的品牌知名度(a3)一一质质量期望量期望质量期望是指顾客在使用某超市产品前对其的期望水平。顾客的质量期望会影响顾客价值,而且质量期望还会顾客感知造成影响.还有学者指出,对于顾客期望要素,至少可以从整体感觉、个性化服务、可靠性三个方面来观测。结合上述因素,可以从几个方面衡量对某超市的质量期望。购物前,对某超市整体服务的期望(a4)购物前,期望某超市商品的新鲜程度达到的水平(a5)购物前,期望某超市营业时间安排合理程度(a6)购物前,期望某超市员工服务态度达到的水平(a7)购物前,期望某超市结账速度达到的水平(a8)一一质质

11、量量感知感知质量感知和质量期望相对应,质量期望考虑的是在购买商品前的期望,质量感知是在购买商品后的实际感受。可以从几个方面衡量。购物后,对某超市整体服务的满意程度(a9)购物后,认为某超市商品的新鲜程度达到的水平(a10)购物后,认为超市营业时间安排合理程度(a11)购物后,认为某超市员工服务态度达到的水平(a12)购物后,认为某超市结账速度达到的水平(a13)一一感知价感知价值值根据ANDERSON和FOMELL(EUGENEW.ANDERSON&CLAESFOMELL,2000)对美国顾客满意指数模型的进一步研究,认为对于顾客价值部分可以从性价比来衡量。您认为某超市商品的价格如何(a14)

12、与其他超市相比,您认为某超市商品的价格如何(a15)一一顾顾客客满满意意顾客满意一般可以从三个方面衡量,一是可以从整体上来感觉;二是可以与消费前的期望进行比较,寻找两者的差距;三是可以与理想状态下的感觉比较,寻找两者的差距。因此,可以通过以下几个指标衡量。对某超市的总体满意程度(a16)和您消费前的期望比,您对某超市的满意程度(a17)和您心目中的超市比,您对某超市的满意程度(a18)一一顾顾客抱怨客抱怨FORNE和WERNERFELT(1988)的研究成果,认为顾客满意的增加会减少顾客的抱怨,同时会增加顾客的忠诚,当顾客不满意时,他们往往会选择抱怨。对于抱怨的观测,一般有两种方式,一种是比较

13、正式的形式,向超市提出正式抱怨,有换货,退货等行为;另一种是非正式的形式,顾客会宣传,形成群众对于该超市的口碑。您对某超市投诉的频率(包括给超市写投诉信和直接向超市人员反映)(a19)您对某超市抱怨的频率(私下抱怨并未告知超市)(a20)您认为某超市对顾客投诉的处理效率和效果(a21)一一顾顾客忠客忠诚诚顾客忠诚主要可以从三个方面体现:顾客推荐意向、转换产品的意向、重复购买的意向。同时还有学者指出顾客忠诚可以从顾客对涨价的容忍性、重复购买性两方面衡量。综合上述因素,拟从以下几个方面衡量顾客忠诚。我会经常去某超市(a22)我会推荐同学和朋友去某超市(a23)如果发现某超市的产品或服务有问题后,能

14、以谅解的心态主动向超市反馈,求得解决,并且以后还会来超市购物(a24)1正向的,采用Likert10级量度从“非常低”到“非常高”表-2模型变量对应表模型变量对应表 问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。调查硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。

15、问卷内容包括者经常光顾的超市进行控制。问卷内容包括7个潜变量因子,个潜变量因子,24项可测指标,项可测指标,7个人口变量,量表采用了个人口变量,量表采用了Likert10级量度,如对超市形象的测量:级量度,如对超市形象的测量:三、案例简要三、案例简要一、一、超市形象超市形象1代表代表“非常差非常差劲劲”,10代表代表“非常好非常好”1您对某超市总体形象的评价1 2 3 4 5 6 7 8 9 102您认为与其它校内超市相比,某超市的形象如何1 2 3 4 5 6 7 8 9 103您认为与其它校内超市相比,某超市品牌知名度如何1 2 3 4 5 6 7 8 9 10注:调查共发放问卷注:调查共

16、发放问卷500份,收回有效样本份,收回有效样本436份。份。三、案例简要三、案例简要图图-3 信度分析的选择信度分析的选择图图-4 信度分析变量及方法的选择信度分析变量及方法的选择三、案例简要三、案例简要Reliability StatisticsCronbachsAlphaNofItems.89224表表-3 信度分析结果信度分析结果潜变量可测变量个数Cronbachs Alpha超市形象30.858质量期望50.889质量感知50.862感知价格20.929顾客满意30.948顾客抱怨30.255顾客忠诚30.738表表-4 潜变量的信度检验潜变量的信度检验三、案例简要三、案例简要图图-5

17、 初始模型结构初始模型结构图图-6 Amos Graphics初始界面图初始界面图三、案例简要三、案例简要图图-7 建模区域的版式调整建模区域的版式调整图图-8 建立潜变量建立潜变量三、案例简要三、案例简要图图-9 潜变量命名潜变量命名图图-10 命名后的潜变量命名后的潜变量三、案例简要三、案例简要图图-11 设定潜变量关系设定潜变量关系图图-12 设定可测变量及残差变量设定可测变量及残差变量三、案例简要三、案例简要图图-13 可测变量指定与命名可测变量指定与命名图图-14 初始模型设置完成初始模型设置完成三、案例简要三、案例简要图图-15 数据配置数据配置图图-16 数据读入数据读入三、案例

18、简要三、案例简要图图-17 参数估计选择参数估计选择图图-18 标准化系数计算标准化系数计算三、案例简要三、案例简要图图-19 模型运算完成图模型运算完成图图图-20 参数估计结果图参数估计结果图未标准化路径系数估计S.E.C.R.PLabel标准化路径系数估计质量期望-超市形象0.3010.0456.68*par_160.358质量感知-质量期望0.4340.0577.633*par_170.434感知价格-质量期望0.3290.0893.722*par_180.244感知价格-质量感知-0.1210.082-1.4670.142par_19-0.089感知价格-超市形象-0.0050.06

19、5-0.070.944par_20-0.004顾客满意-超市形象0.9120.04321.389*par_210.878顾客满意-感知价格-0.0290.028-1.0360.3par_23-0.032顾客忠诚-超市形象0.1670.1011.6530.098par_220.183顾客忠诚-顾客满意0.50.14.988*par_240.569a1-超市形象10.927a2-超市形象1.0080.03627.991*par_10.899a3-超市形象0.7010.04814.667*par_20.629a5-质量期望10.79a4-质量期望0.790.06112.852*par_30.626a

20、6-质量期望0.8910.05316.906*par_40.786a7-质量期望1.1590.05919.628*par_50.891a8-质量期望1.0240.05817.713*par_60.816a10-质量感知10.768a9-质量感知1.160.06517.911*par_70.882a11-质量感知0.7580.06811.075*par_80.563a12-质量感知1.1010.06915.973*par_90.784a13-质量感知0.9830.06714.777*par_100.732a18-顾客满意10.886a17-顾客满意1.0390.03430.171*par_110

21、.939a15-感知价格10.963a14-感知价格0.9720.1277.67*par_120.904a16-顾客满意1.0090.03331.024*par_130.95a24-顾客忠诚10.682a23-顾客忠诚1.2080.09213.079*par_140.8461凡是a+数字的变量都是代表问卷中相应测量指标的,其中数字代表的问卷第一部分中问题的序号。表表-5 系数估计结果系数估计结果方差估计S.E.C.R.PLabel超市形象3.5740.29911.958*par_25z22.2080.2439.08*par_26z12.060.2418.54*par_27z34.4050.66

22、86.596*par_28z40.8940.1078.352*par_29z51.3730.2146.404*par_30e10.5840.0797.363*par_31e20.8610.0939.288*par_32e32.6750.19913.467*par_33e51.5260.1311.733*par_34e42.4590.18613.232*par_35e61.2450.10511.799*par_36e70.8870.1038.583*par_37e81.3350.11911.228*par_38e101.7590.15211.565*par_39e90.9760.1227.976

23、*par_40e113.1380.23513.343*par_41e121.9260.17111.272*par_42e132.1280.17612.11*par_43e181.0560.08911.832*par_44e160.420.0528.007*par_45e170.5540.0619.103*par_46e150.3640.5910.6160.538par_47e243.4130.29511.55*par_48e223.3810.28112.051*par_49e231.730.2526.874*par_50e140.9810.5621.7450.081par_51表表-6 方差估

24、计方差估计三、案例简要三、案例简要指数名称指数名称评评价价标标准准1绝对拟合指数(卡方)越小越好GFI大于0.9RMR小于0.05,越小越好SRMR小于0.05,越小越好RMSEA小于0.05,越小越好相对拟合指数NFI大于0.9,越接近1越好TLI大于0.9,越接近1越好CFI大于0.9,越接近1越好信息指数AIC越小越好CAIC越小越好1表格中给出的是该拟合指数的最优标准,譬如对于RMSEA,其值小于0.05表示模型拟合较好,在0.05-0.08间表示模型拟合尚可(Browne&Cudeck,1993)。因此在实际研究中,可根据具体情况分析。表表-7 拟合指数拟合指数对本章所研究案例,初始

25、模型运算结果如对本章所研究案例,初始模型运算结果如表表-8,各项拟合指数尚可。但从模型参数,各项拟合指数尚可。但从模型参数的显著性检验的显著性检验(如表如表-9)中可发现可以看出,无论是关于感知价格的测量方程部分中可发现可以看出,无论是关于感知价格的测量方程部分还是关于结构方程部分(除与质量期望的路径外),系数都是不显著的。关于感知还是关于结构方程部分(除与质量期望的路径外),系数都是不显著的。关于感知价格的结构方程部分的平方复相关系数为价格的结构方程部分的平方复相关系数为0.048,非常小。,非常小。四、案例修正四、案例修正表-8常用拟合指数计算结果拟拟合合指数指数卡方卡方值值(自自由度由度

26、)CFINFIIFIRMSEAAICBCCEVCI结结果果1031.4(180)0.8660.8420.8660.1091133.4411139.3782.834四、案例修正四、案例修正表-9系数估计结果1凡是a+数字的变量都是代表问卷中相应测量指标的,其中数字代表的问卷第一部分中问题的序号。未未标标准化路径系数估准化路径系数估计计S.E.C.R.PLabel标标准化路径系数估准化路径系数估计计质量期望-超市形象0.3010.0456.68*par_160.358质量感知-质量期望0.4340.0577.633*par_170.434感知价格-质量期望0.3290.0893.722*par_1

27、80.244感知价格-质量感知-0.1210.082-1.4670.142par_19-0.089感知价格-超市形象-0.0050.065-0.070.944par_20-0.004顾客满意-超市形象0.9120.04321.389*par_210.878顾客满意-感知价格-0.0290.028-1.0360.3par_23-0.032顾客忠诚-超市形象0.1670.1011.6530.098par_220.183顾客忠诚-顾客满意0.50.14.988*par_240.569注:“*”表示0.01水平上显著,括号中是相应的C.R值,即t值。另外,从实际的角度考另外,从实际的角度考虑,通过自身

28、的感受,虑,通过自身的感受,某超市商品价格同校内某超市商品价格同校内外其它主要超市的商品外其它主要超市的商品价格的差别不明显,因价格的差别不明显,因此,首先考虑将该因子此,首先考虑将该因子在本文结构方程模型中在本文结构方程模型中去除,并且增加质量期去除,并且增加质量期望和质量感知到顾客满望和质量感知到顾客满意的路径。超市形象对意的路径。超市形象对顾客忠诚路径先保留。顾客忠诚路径先保留。修改的模型如图修改的模型如图-21。四、案例修正四、案例修正图-21修正的模型二根据上面提出的图根据上面提出的图-21提出的所示的模型,在提出的所示的模型,在Amos中运用极大似然估计运行的部分中运用极大似然估计

29、运行的部分结果如表结果如表-10。四、案例修正四、案例修正表表-10 常用拟合指数计算结果常用拟合指数计算结果拟拟合合指数指数卡方卡方值值(自自由度由度)CFINFIIFIRMSEAAICBCCEVCI结结果果819.5(145)0.8830.8620.8840.108909.541914.2782.274从表从表-11和表和表-12可以看出,卡方值减小了很多,并且各拟合指数也都得到了改善,可以看出,卡方值减小了很多,并且各拟合指数也都得到了改善,但与理想的拟合指数值仍有差距。该模型的各个参数在但与理想的拟合指数值仍有差距。该模型的各个参数在0.05的水平下都是显著的,的水平下都是显著的,并且

30、从实际考虑,各因子的各个路径也是合理存在的。并且从实际考虑,各因子的各个路径也是合理存在的。四、案例修正四、案例修正拟拟合指数合指数卡方卡方值值(自由度自由度)CFINFIIFIRMSEAAICBCCEVCI结结果果1031.4(180)0.8660.8420.8660.1091133.4411139.3782.834拟拟合指数合指数卡方卡方值值(自由度自由度)CFINFIIFIRMSEAAICBCCEVCI结结果果819.5(145)0.8830.8620.8840.108909.541914.2782.274表-11常用拟合指数计算结果表-12常用拟合指数计算结果下面考虑通过修正指数对模型

31、修正,通过点击工具栏中的来查看模型输出详细结下面考虑通过修正指数对模型修正,通过点击工具栏中的来查看模型输出详细结果中的果中的Modification Indices项可以查看模型的修正指数(项可以查看模型的修正指数(Modification Index)结果,双箭头(结果,双箭头(“”)部分是残差变量间的协方差修正指数,表示如果在两个)部分是残差变量间的协方差修正指数,表示如果在两个可测变量的残差变量间增加一条相关路径至少会减少的模型的卡方值;单箭头可测变量的残差变量间增加一条相关路径至少会减少的模型的卡方值;单箭头(“-”)部分是变量间的回归权重修正指数,表示如果在两个变量间增加一条)部分

32、是变量间的回归权重修正指数,表示如果在两个变量间增加一条因果路径至少会减少的模型的卡方值。比如,超市形象到质量感知的因果路径至少会减少的模型的卡方值。比如,超市形象到质量感知的MI值为值为179.649,表明如果增加超市形象到质量感知的路径,则模型的卡方值会大大减小。,表明如果增加超市形象到质量感知的路径,则模型的卡方值会大大减小。从实际考虑,超市形象的确会影响到质量感知,设想,一个具有良好品牌形象的从实际考虑,超市形象的确会影响到质量感知,设想,一个具有良好品牌形象的超市,人们难免会对感到它的商品质量较好;反之,则相反。因此考虑增加从超超市,人们难免会对感到它的商品质量较好;反之,则相反。因

33、此考虑增加从超市形象到质量感知的路径的模型如图市形象到质量感知的路径的模型如图-22。四、案例修正四、案例修正图图-22 修正的模型三修正的模型三四、案例修正四、案例修正根据上面提出的图根据上面提出的图-22所示的模型,在所示的模型,在Amos中运用极大似然估计运行的部分结果中运用极大似然估计运行的部分结果如表如表-13、表、表-14。四、案例修正四、案例修正拟合指数卡方值(自由度)CFINFIIFIRMSEAAICBCCEVCI结果510.1(144)0.9360.9140.9370.080602.100606.9421.505表表-13 常用拟合指数计算结果常用拟合指数计算结果表表-14

34、5%水平下不显著的估计参数水平下不显著的估计参数从表从表-12和表和表-13可以看出,卡方值减小了很多,并且各拟合指数也都得到了改善,可以看出,卡方值减小了很多,并且各拟合指数也都得到了改善,但与理想的拟合指数值仍有差距。但与理想的拟合指数值仍有差距。EstimateS.E.C.R.PLabel顾客满意-质量期望-.054.035-1.540.124par_22顾客忠诚-超市形象.164.1001.632.103par_21除上面表除上面表-14中的两个路径系数在中的两个路径系数在0.05的水平下不显著外,该模型其它各个参数在的水平下不显著外,该模型其它各个参数在0.01水平下都是显著的,首先

35、考虑去除水平下都是显著的,首先考虑去除p值较大的路径,即质量期望到顾客满意的值较大的路径,即质量期望到顾客满意的路径。重新估计模型,结果如表路径。重新估计模型,结果如表-15。四、案例修正四、案例修正表-155%水平下不显著的估计参数EstimateS.E.C.R.PLabel顾客忠诚-超市形象.166.1011.652.099par_21从表从表-15可以看出,超市形象对顾客忠诚路径系数估计的可以看出,超市形象对顾客忠诚路径系数估计的p值为值为0.099,仍大于,仍大于0.05。并。并且从实际考虑,在学校内部,学生一般不会根据超市之间在形象上的差别而选择坚持且从实际考虑,在学校内部,学生一般

36、不会根据超市之间在形象上的差别而选择坚持去同一个品牌的超市,更多的可能是通过超市形象影响超市满意等因素进而影响到顾去同一个品牌的超市,更多的可能是通过超市形象影响超市满意等因素进而影响到顾客忠诚因素。考虑删除这两个路径的模型如图客忠诚因素。考虑删除这两个路径的模型如图-23。根据上面提出的如图根据上面提出的如图-23所示的模型,在所示的模型,在AMOS中运用极大似然估计运行的部分结中运用极大似然估计运行的部分结果如表果如表-16。四、案例修正四、案例修正拟合指数卡方值(自由度)CFINFIIFIRMSEAAICBCCEVCI结果515.1(146)0.9360.9130.9360.080603

37、.117607.7491.508表-16常用拟合指数计算结果图图-23 修正的模型四修正的模型四从表从表-13和表和表-16可以看出,卡方值几乎没变,可以看出,卡方值几乎没变,并且各拟合指数几乎没有改变,但模型便简并且各拟合指数几乎没有改变,但模型便简单了,做此改变是值得的。该模型的各个参单了,做此改变是值得的。该模型的各个参数在数在0.01的水平下都是显著的,另外质量感的水平下都是显著的,另外质量感知对应的测量指标知对应的测量指标a11(关于营业时间安排(关于营业时间安排合理程度的打分)对应方程的测定系数为合理程度的打分)对应方程的测定系数为0.278,比较小,从实际考虑,由于人大校,比较小

38、,从实际考虑,由于人大校内东区物美超市的营业时间从很长,几乎是内东区物美超市的营业时间从很长,几乎是全天候营业在顾客心中,可能该指标能用质全天候营业在顾客心中,可能该指标能用质量感知解释的可能性不大,考虑删除该测量量感知解释的可能性不大,考虑删除该测量指标。修改后的模型如图指标。修改后的模型如图-24。四、案例修正四、案例修正图图-24 修正的模型五修正的模型五根据上面提出的如图根据上面提出的如图-24所示的模型,在所示的模型,在Amos中运用极大似然估计运行的部分结中运用极大似然估计运行的部分结果如表果如表-17。四、案例修正四、案例修正拟合指数卡方值(自由度)CFINFIIFIRMSEAA

39、ICBCCEVCI结果401.3(129)0.9510.9300.9510.073485.291489.4801.213从表从表-16和表和表-17可以看出,卡方值减小了很多,并且各拟合指数都得到了较大的可以看出,卡方值减小了很多,并且各拟合指数都得到了较大的改善。该模型的各个参数在改善。该模型的各个参数在0.01的水平下都仍然是显著的,各方程的对应的测定的水平下都仍然是显著的,各方程的对应的测定系数增大了。系数增大了。表-17常用拟合指数计算结果常用拟合指数计算结果下面考虑通过修正指数对模型修正,下面考虑通过修正指数对模型修正,e12与与e13的的MI值最大,为值最大,为26.932,表明,

40、表明如果增加如果增加a12与与a13之间的残差相关的路径,则模型的卡方值会减小较多。从实之间的残差相关的路径,则模型的卡方值会减小较多。从实际考虑,员工对顾客的态度与员工给顾客结帐的速度,实际上也确实存在相关,际考虑,员工对顾客的态度与员工给顾客结帐的速度,实际上也确实存在相关,设想,对顾客而言,超市员工结帐速度很慢本来就是一种对顾客态度不好的方设想,对顾客而言,超市员工结帐速度很慢本来就是一种对顾客态度不好的方面;反之,则相反。因此考虑增加面;反之,则相反。因此考虑增加e12与与e13的相关性路径。(这里的分析不考的相关性路径。(这里的分析不考虑潜变量因子可测指标的更改,理由是我们在设计问卷

41、的题目的信度很好,而虑潜变量因子可测指标的更改,理由是我们在设计问卷的题目的信度很好,而且题目本身的设计也不允许这样做,以下同。)且题目本身的设计也不允许这样做,以下同。)重新估计模型,重新寻找重新估计模型,重新寻找MI值较大的,值较大的,e7与与e8的的MI值较大,为值较大,为26.230,(虽,(虽然然e3与与e6的的MI值等于值等于26.746,但它们不属于同一个潜变量因子,因此不能考虑,但它们不属于同一个潜变量因子,因此不能考虑增加相关性路径,以下同)表明如果增加增加相关性路径,以下同)表明如果增加a7与与a8之间的残差相关的路径,则模之间的残差相关的路径,则模型的卡方值会减小较多。这

42、也是员工对顾客的态度与员工给顾客结帐的速度之型的卡方值会减小较多。这也是员工对顾客的态度与员工给顾客结帐的速度之间存在相关,因此考虑增加间存在相关,因此考虑增加e7与与e8的相关性路径。的相关性路径。四、案例修正四、案例修正重新估计模型,重新寻找重新估计模型,重新寻找MI值较大的,值较大的,e17与与e18的的MI值较大,为值较大,为13.991,表,表明如果增加明如果增加a17与与a18之间的残差相关的路径,则模型的卡方值会减小较多。实之间的残差相关的路径,则模型的卡方值会减小较多。实际上消费前的满意度和与心中理想超市比较的满意度之间显然存在相关,因此际上消费前的满意度和与心中理想超市比较的

43、满意度之间显然存在相关,因此考虑增加考虑增加e17与与e18的相关性路径。的相关性路径。重新估计模型,重新寻找重新估计模型,重新寻找MI值较大的,值较大的,e2与与e3的的MI值较大,为值较大,为11.088,表明如,表明如果增加果增加a2与与a3之间的残差相关的路径,则模型的卡方值会减小较多。实际上超之间的残差相关的路径,则模型的卡方值会减小较多。实际上超市形象和超市品牌知名度之间显然存在相关,因此考虑增加市形象和超市品牌知名度之间显然存在相关,因此考虑增加e2与与e3的相关性路的相关性路径。径。四、案例修正四、案例修正重重新新估估计计模模型型,重重新新寻寻找找MI值值较较大大的的,e10与

44、与e12的的MI值值较较大大,为为5.222,表表明明如如果果增增加加a10与与a12之之间间的的残残差差相相关关的的路路径径,则则模模型型的的卡卡方方值值会会减减小小较较多多。但但实实际际上上超超市市的的食食品品保保险险&日日用用品品丰丰富富性性与与员员工工态态度度之之间间显显然然不不存存在在相相关关,因因此此不不考考虑虑增增加加e10与与e12的的相相关关性性路路径径。另另外外,从从剩剩下下的的变变量量之之间间MI值值没没有有可可以以做做处处理理的的变变量量对对了了,因因此此考考虑虑MI值修正后的模型如图值修正后的模型如图-25。四、案例修正四、案例修正图图7-25 修正的模型五修正的模型

45、五根根据据上上面面提提出出的的如如图图-25所所示示的的模模型型,在在Amos中中运运用用极极大大似似然然估估计计运运行行的的部部分分结果如表结果如表-18。四、案例修正四、案例修正拟合指数卡方值(自由度)CFINFIIFIRMSEAAICBCCEVCI结果281.9(125)0.9720.9510.9720.056373.877378.4650.935表-18常用拟合指数计算结果常用拟合指数计算结果从表从表-17和表和表-18可以看出,卡方值减小了很多,并且各拟合指数都得到了较可以看出,卡方值减小了很多,并且各拟合指数都得到了较大的改善。该模型的各个参数在大的改善。该模型的各个参数在0.01

46、的水平下都仍然是显著的,各方程的对的水平下都仍然是显著的,各方程的对应的测定系数增大了。应的测定系数增大了。下面考虑根据下面考虑根据Pairwise Parameter Comparisons来判断对待估计参数的设定,来判断对待估计参数的设定,即判断哪些结构方程之间的系数没有显著差异,哪些测量方程的系数之间没有即判断哪些结构方程之间的系数没有显著差异,哪些测量方程的系数之间没有显著差异,哪些结构方程的随机项的方差之间没有显著差异,哪些测量方程的显著差异,哪些结构方程的随机项的方差之间没有显著差异,哪些测量方程的随机项的方差之间的之间没有显著差异,对没有显著差异的相应参数估计设定随机项的方差之间

47、的之间没有显著差异,对没有显著差异的相应参数估计设定为相等为相等,直到最后所有相应的直到最后所有相应的critical ratio都大于都大于2为止。通过点击工具栏中的为止。通过点击工具栏中的来查看模型输出详细结果中的来查看模型输出详细结果中的Pairwise Parameter Comparison项可以查看临项可以查看临界比率(界比率(Critical Ratio)结果,其中)结果,其中par_1到到par_46代表模型中代表模型中46个待估参数,个待估参数,其含义在模型参数估计结果表(如表其含义在模型参数估计结果表(如表-8,-10)中标识。根据)中标识。根据CR值的大小,可值的大小,可

48、以判断两个模型参数的数值间是否存在显著性差异。如果经检验发现参数值间以判断两个模型参数的数值间是否存在显著性差异。如果经检验发现参数值间不存在显著性差异,则可以考虑模型估计时限定两个参数相等。不存在显著性差异,则可以考虑模型估计时限定两个参数相等。四、案例修正四、案例修正如果是某两个参数没有显著差异,并且根据经验也是如此,则可在相应的认为相等如果是某两个参数没有显著差异,并且根据经验也是如此,则可在相应的认为相等的参数对应的路径或残差变量上点击右键选择的参数对应的路径或残差变量上点击右键选择Object Properties,然后出现如图,然后出现如图-11的选项卡,选择的选项卡,选择para

49、meters项,如图项,如图-26,图,图-27,图,图-28。四、案例修正四、案例修正图图-26 对应因果路径对应因果路径图图-27 对应残差变量对应残差变量图图-28 对应相关系数路径对应相关系数路径然后在然后在Regression weight,variance,covariane输入相同的英文名称即可。比输入相同的英文名称即可。比如从图如从图-25修正的模型六输出的临界比率结果中发现绝对值最小的是修正的模型六输出的临界比率结果中发现绝对值最小的是par_44和和par_45对应的对应的-0.021,远远小于,远远小于95%置信水平下的临界值,说明两个方差间不置信水平下的临界值,说明两个

50、方差间不存在显著差异。对应的是存在显著差异。对应的是e22和和e24的方差估计,从实际考虑,也可以认为它们的方差估计,从实际考虑,也可以认为它们的方差相差,则残差变量的方差相差,则残差变量e22和和e24上点击右键选择上点击右键选择Object Properties,出现如,出现如图图-29的选项卡,然后在的选项卡,然后在Object Properties选项卡下面的选项卡下面的variance中都输入中都输入“v2”,最后关掉窗口即可设置,最后关掉窗口即可设置e22和和e24的方差相等。经过反复比较得到的结的方差相等。经过反复比较得到的结构方程模型如图构方程模型如图-30。四、案例修正四、案

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁