《2023年高三数学一轮复习专讲专练基础知识32同角三角函数的基本关系与诱导公式.pdf》由会员分享,可在线阅读,更多相关《2023年高三数学一轮复习专讲专练基础知识32同角三角函数的基本关系与诱导公式.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课时跟踪检测(十九)同角三角函数的基本关系与诱导公式1已知 sin()0,则下列不等关系中必定成立的是()Asin 0Bsin 0,cos 0,cos 0 Dsin 0,cos 0 2(2012 安徽名校模拟)已知 tan x 2,则 sin2x1()A0 B.95C.43D.533(2012 江西高考)若sin cos sin cos 12,则 tan 2 ()A34B.34C43D.434(2012 合肥模拟)已知 f()sin cos 2 cos tan,则 f 313的值为()A.12B13C12D.135已知 cos232,且|2,则 tan ()A33B.33C3 D.3 6已知
2、2tan sin 3,2 0,则 sin ()A.32B32C.12D127cos174sin 174的值是 _8若sin cos sin cos 2,则 sin(5)sin32 _.9(2012 中山模拟)已知 cos623,则 sin 23_.10求值:sin(1 200)cos 1 290cos(1 020)sin(1 050)tan 945.11已知sin 255,求tan()sin52cos52的值12已知 cos()12,且 是第四象限角,计算:(1)sin(2);(2)sin 2n1 sin 2n1 sin 2ncos 2n(nZ)1(2012 淄博模拟)已知 sin 2 242
3、5,4,0,则 sin cos ()A15B.15C75D.752(2012 宜春模拟)给出下列各函数值:sin(1 000);cos(2 200);tan(10);sin710cos tan179,其中符号为负的是()ABCD3已知 A、B、C 是三角形的内角,3sin A,cos A 是方程 x2x2a0 的两根(1)求角 A;(2)若12sin Bcos Bcos2Bsin2B 3,求 tan B.答案课时跟踪检测(十九)A 级1选 Bsin()0,sin 0.cos()0,cos 0.cos 0.2选 Bsin2x12sin2xcos2xsin2xcos2x2tan2x1tan2x19
4、5.3选 Bsin cos sin cos tan 1tan 112,tan 3.tan 2 2tan 1tan234.4选 C f(a)sin cos cos tan cos ,f 313cos 313 cos 10 3 cos312.5选 Dcos2 sin 32,又|0,为第一或第二象限角当 是第一象限角时,cos 1sin2 55,tan()sin52cos52tan cos sin sin cos cos sin 1sin cos 52.当 是第二象限角时,cos 1sin2 55,原式1sin cos 52.12解:cos()12,cos 12,cos 12.又 是第四象限角,si
5、n 1cos2 32.(1)sin(2)sin 2()sin()sin 32;(2)sin 2n1 sin 2n1 sin 2n cos 2nsin 2n sin 2n sin 2n cos 2n sin sin sin cos sin sin sin cos 2sin sin cos 2cos 4.B 级1选 B(sin cos )212sin cos 1sin 2 125,又 4,0,sin cos 0,所以 sin cos 15.2选 Csin(1 000)sin 800;cos(2 200)cos(40)cos 40 0;tan(10)tan(3 10)0,tan1790.3解:(1)由已知可得,3sin A cos A 1.又 sin2A cos2A1,所以 sin2A(3sin A 1)21,即 4sin2A23sin A 0,得 sin A 0(舍去)或 sin A 32,则 A3或23,将 A3或23代入知A23时不成立,故 A3.(2)由12sin Bcos Bcos2Bsin2B 3,得 sin2B sin Bcos B 2cos2B0,cos B 0,tan2Btan B 20,tan B 2 或 tan B 1.tan B 1 使 cos2Bsin2B0,舍去,故 tan B 2.