《2023年排列组合练习题及超详细解析超详细解析答案.pdf》由会员分享,可在线阅读,更多相关《2023年排列组合练习题及超详细解析超详细解析答案.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、惠来一中数学组 方文湃 1 排列组合 一、排列与组合 1.从 9 人中选派 2 人参加某一活动,有多少种不同选法?2.从 9 人中选派 2 人参加文艺活动,1 人下乡演出,1 人在本地演出,有多少种不同选派方法?3.现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是 A.男同学 2 人,女同学 6 人 B.男同学 3 人,女同学 5 人 C.男同学 5 人,女同学 3 人 D.男同学 6 人,女同学 2 人 4.一条铁路原有 m个车站,为了适应客运需要新增加 n 个车站(n1
2、),则客运车票增加了 58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13个 C.14个 D.15个 5用 0,1,2,3,4,5 这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于 1000 的自然数?(5)可以组成多少个大于 3000,小于 5421 的数字不重复的四位数?二、注意附加条件 1.6 人排成一列 (1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由 1、2、3、4、
3、5、6 六个数字可组成多少个无重复数字且是 6 的倍数的五位数?3.由数字 1,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第 379 个数是 A.3761 B.4175 C.5132 D.6157 惠来一中数学组 方文湃 2 4.设有编号为 1、2、3、4、5 的五个茶杯和编号为 1、2、3、4、5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30 种 B.31种 C.32种 D.36种 5.从编号为 1,2,10,11 的 11 个球中取 5 个,使这 5 个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和
4、为奇数,其取法总数是 A.230 种 B.236种 C.455种 D.2640种 6.从 6 双不同颜色的手套中任取 4 只,其中恰好有 1 双同色的取法有 A.240 种 B.180种 C.120种 D.60种 7.用 0,1,2,3,4,5 这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第 71 个数是 。三、间接与直接 1.有 4 名女同学,6 名男同学,现选 3 名同学参加某一比赛,至少有 1 名女同学,由多少种不同选法?2.6 名男生 4 名女生排成一行,女生不全相邻的排法有多少种?3.已知集合 A和 B各 12 个元素,ABI含有 4 个元素,试求同时满足下列两
5、个条件的集合 C的个数:(1)()CABU且 C中含有三个元素;(2)CA I,表示空集。4.从 5 门不同的文科学科和 4 门不同的理科学科中任选 4 门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 A.60 种 B.80种 C.120种 D.140种 5.四面体的顶点和各棱中点共有 10 个点,在其中取 4 个不共面的点不同取法有多少种?6.以正方体的 8 个顶点为顶点的四棱锥有多少个?7.对正方体的 8 个顶点两两连线,其中能成异面直线的有多少对?四、分类与分步 1.求下列集合的元素个数(1)(,)|,6Mx yx yN xy;(2)(,)|,14,15Hx
6、yx yNxy 夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 3 2.一个文艺团队有 9 名成员,有 7 人会唱歌,5 人会跳舞,现派 2 人参加演出,其中 1 名会唱歌,1 名会跳舞,有多少种不同选派方法?3.已知直线12/ll,在1l上取 3 个点,在2l上取 4 个点,每两个点连成直线,那么这些直线在1l和2
7、l之间的交点(不包括1l、2l上的点)最多有 A.18 个 B.20个 C.24个 D.36个 4.9 名翻译人员中,6 人懂英语,4 人懂日语,从中选拔 5 人参加外事活动,要求其中 3 人担任英语翻译,2 人担任日语翻译,选拔的方法有 种(用数字作答)。5.某博物馆要在 20 天内接待 8 所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观 3 天,其余学校只参观 1 天,则在这 20 天内不同的安排方法为 A.372017C A种 B.820A种 C.171817C A种 D.1818A种 6.从 10 种不同的作物种子选出 6 种放入 6 个不同的瓶子展出,如果甲乙
8、两种种子不许放第一号瓶内,那么不同的放法共有 A.24108C A种 B.1599C A种 C.1589C A种 D.1598C A种 7.在画廊要展出 1 幅水彩画、4 幅油画、5 幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 A.1545A A种 B.245345A A A种 C.145445A A A种 D.245245A A A种 8.把一个圆周 24 等分,过其中任意 3 个分点,可以连成圆的内接三角形,其中直角三角形的个数是 A.122 B.132 C.264 9.有三张纸片,正、反面分别写着数字 1、2、3 和 4、5、6,将这三张
9、纸片上的数字排成三位数,共能组不同三位数的个数是 A.24 B.36 C.48 D.64 10.在 120 共 20 个整数中取两个数相加,使其和为偶数的不同取法共有多少种?11.如下图,共有多少个不同的三角形?解:所有不同的三角形可分为三类:夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 4 第一类:其中有两条边是
10、原五边形的边,这样的三角形共有 5 个 第二类:其中有且只有一条边是原五边形的边,这样的三角形共有 54=20 个 第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有 5+5=10个 由分类计数原理得,不同的三角形共有 5+20+10=35个.12.从 5 部不同的影片中选出 4 部,在 3 个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法(用数字作答)。五、元素与位置位置分析 1.7 人争夺 5 项冠军,结果有多少种情况?2.75600 有多少个正约数?有多少个奇约数?解:75600 的约数就是能整除 75600 的整数,所以本题就是分别求能整除7
11、5600 的整数和奇约数的个数.由于 75600=2433527(1)75600的每个约数都可以写成lkjl7532的形式,其中40 i,30j,20 k,10 l 于是,要确定 75600 的一个约数,可分四步完成,即lkji,分别在各自的范围内任取一个值,这样i有 5 种取法,j有 4 种取法,k有 3 种取法,l有 2 种取法,根据分步计数原理得约数的个数为5432=120个.(2)奇约数中步不含有 2 的因数,因此 75600 的每个奇约数都可以写成lkj753的形式,同上奇约数的个数为 432=24 个.3.2 名医生和 4 名护士被分配到两所学校为学生体检,每校分配 1 名医生和
12、2 名护士,不同分配方法有多少种?4有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?解:(1)每位学生有三种选择,四位学生共有参赛方法:3 3 3 381 种;夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 5(2)每项竞赛被选择的
13、方法有四种,三项竞赛共有参赛方法:4 4 464 种.六、染色问题 1.如图一,要给,四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()A.180 B.160 C.96 D.60 若变为图二,图三呢?(240 种,5 444=320种)2.某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中 A、B、C、D(如图)每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种(用具体数字作答)。七、消序 1.有 4 名男生,3 名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排
14、法?2.书架上有 6 本书,现再放入 3 本书,要求不改变原来 6 本书前后的相对顺序,有多少种不同排法?八、分组分配 1.某校高中一年级有 6 个班,分派 3 名教师任教,每名教师任教二个班,不同的安排方法有多少种?2.高三级 8 个班,分派 4 名数学老师任教,每位教师任教 2 个班,则不同安排方法有多少种?3.6 本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?4.8 项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种 图一 图二 图三 ABCD夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同
15、站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 6 5.六人住 A、B、C三间房,每房最多住三人,(1)每间住两人,有 种不同的住法,(2)一间住三人,一间住二人,一间住一人,有 种不同的住宿方案。6.8 人住 ABC三个房间,每间最多住 3 人,有多少种不同住宿方案?7.有 4 个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?7.把标有 a,b,c,d,的 8 件不同纪念品平均赠给甲、乙两位
16、同学,其中 a、b 不赠给同一个人,则不同的赠送方法有 种(用数字作答)。九、捆绑 1.A、B、C、D、E五个人并排站成一列,若 A、B必相邻,则有多少种不同排法?2.有 8 本不同的书,其中科技书 3 本,文艺书 2 本,其它书 3 本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这 8 本书的不同排法之比为 A.1:14 B.1:28 C.1:140 D.1:336 十、插空 1.要排一个有 6 个歌唱节目和 4 个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、4 名男生和 4 名女生站成一排,若要求男女相间,则不同的排法数有()A.28
17、80 B.1152 C.48 D.144 3.要排一个有 5 个歌唱节目和 3 个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?4.5 人排成一排,要求甲、乙之间至少有 1 人,共有多少种不同排法?5.把 5 本不同的书排列在书架的同一层上,其中某 3 本书要排在中间位置,有多少种不同排法?6.1 到 7 七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有 个.7.排成一排的 8 个空位上,坐 3 人,使每人两边都有空位,有多少种不同坐法?8.8 张椅子放成一排,4 人就坐,恰有连续三个空位的坐法有多少种?9.排成一排的 9 个空位上,坐 3 人,使三处有连续二个空
18、位,有多少种不同坐法?夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 7 10.排成一排的 9 个空位上,坐 3 人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?11.某城市修建的一条道路上有12 只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的
19、灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有 种 A.38C B.38A C.39C D.39A 12.在一次文艺演出中,需给舞台上方安装一排彩灯共15 只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有 6 只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是 A.28 种 B.84种 C.180种 D.360种 13.一排长椅上共有 10 个座位,现有 4 人就座,恰有五个连续空位的坐法种数为 。(用数字作答)十一、隔板法 1.不定方程12347xxxx 的正整数解的组数是 ,非负整数解的组数是 。2.某运输公司有 7 个车队,每个车
20、队的车多于 4 辆,现从这 7 个车队中抽出 10 辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 A.84 种 B.120种 C.63种 D.301种 3.要从 7 所学校选出 10 人参加素质教育研讨班,每所学校至少参加 1 人,则这 10 个名额共有 种分配方法。4.有编号为 1、2、3 的 3 个盒子和 10 个相同的小球,现把 10 个小球全部装入 3 个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 A.9 种 B.12种 C.15种 D.18种 5.将 7 只相同的小球全部放入 4 个不同盒子,每盒至少 1 球的方法有多少种?6.某中学从高中 7 个班中选出
21、12 名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有 1 人参加的选法有多少种?十二、对应的思想 1.在 100 名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场?十三、找规律 夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 8 1.在 120 共 20 个
22、整数中取两个数相加,使其和大于 20 的不同取法共有多少种?解:分类标准一,固定小加数.小加数为 1 时,大加数只有 20 这 1 种取法;小加数为 2 时,大加数有 19 或 20 两种取法;小加数为 3 时,大加数为 18,19 或 20 共 3 种取法小加数为 10 时,大加数为 11,12,20 共 10 种取法;小加数为 11 时,大加数有 9 种取法小加数取 19 时,大加数有1 种取法.由分类计数原理,得不同取法共有 1+2+9+10+9+2+1=100种.分类标准二:固定和的值.有和为 21,22,39 这几类,依次有取法 10,9,9,8,8,2,2,1,1种.由分类计数原理
23、得不同取法共有 10+9+9+2+2+1+1=100种.2.从 1 到 100 的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有 A.50 种 B.100种 C.1275种 D.2500种 十四、实验写出所有的排列或组合 1.将数字 1,2,3,4填入标号 1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所填的数字均不同的填法有 种.A.6 B.9 C.11 D.23 解:列表排出所有的分配方案,共有 3+3+3=9种,或3 3 1 19种 未归类几道题 1.从数字 0,1,3,5,7 中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=
24、0?其中有实根的方程有多少个?变式:若直线 Ax+By+C=0的系数 A、B可以从 0,1,2,3,6,7 这六个数字中取不同的数值,则这些方程所表示的直线条数是(A)A.18 B.20 C.12 D.22 2.在 100 件产品中,有 98 件合格品,2 件不合格品.从这 100 件产品中任意抽出 3 件(1)一共有多少种不同的抽法?(2)抽出的 3 件中恰好有一件是不合格品的抽法有多少种?(3)抽出的 3 件中至少有一件是不合格品的抽法有多少种?3.10 双互不相同的鞋子混装在一只口袋中,从中任意抽取 4 只,试求各有多少种情况出现如下结果(1)4 只鞋子没有成双;(2)4只鞋子恰好成双;
25、夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 9(3)4只鞋子有 2 只成双,另 2 只不成双 4.f 是集合 M=a,b,c,d到 N0,1,2 的映射,且 f(a)+f(b)+f(c)+f(d)=4,则不同的映射有多少个?解:根据 a,b,c,d对应的象为 2 的个数分类,可分为三类:第一类,没有一个元素的象为
26、 2,其和又为 4,则集合 M所有元素的象都为 1,这样的映射只有1 个 第二类,有一个元素的象为 2,其和又为 4,则其余 3 个元素的象为 0,1,1,这样的映射有C41C3 1C22 个 第三类,有两个元素的象为 2,其和又为 4,则其余 2 个元素的象必为 0,这样的映射有 C42C22个 根据加法原理共有 1+C41C3 1C22+C42 C22=19个 5.四个不同的小球放入编号为 1,2,3,4 的四个盒子中,则恰有一个空盒的方法共有多少种?6.由 12 个人组成的课外文娱小组,其中 5 个人只会跳舞,5 个人只会唱歌,2 个人既会跳舞又会唱歌,若从中选出 4 个会跳舞和 4 个
27、会唱歌的人去排演节目,共有多少种不同选法?排列、组合练习题参考答案:1.2936C 2.2972A 3.解析:设男生有 n 人,则女生有(8-n)人,由题意得 213831(8)6902nnn nCCAn 即 1(8)30n nn 用选支验证选(B)4.分类:恰有两个杯盖和茶杯的编号相同的盖法有25220C 种;恰有三个杯盖和茶杯的编号相同的盖法有3510C 种;无恰有四个杯盖和茶杯的编号相同的盖法,只有五个杯盖和茶杯的编号完全相同的盖法1种。故选(B)31 种。夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车
28、站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 10 5.分类:1 奇 4 偶:146530C C 3 奇 2 偶:3265200C C 选(A)6.分步:122652240CC 选(A)7.间接法:33106CC 或分类:1221346464C C+C C+C 8.间接法:10471047AA A 9.间接法:33208CC 10.对应:一交点对应1l、2l上各两点:223418C C个选(A)11.分类:英语翻译从单会英语中选派:325460
29、C C 英语翻译选派中一人既会英语又会日语:225330C C 填 90 12.分步:245245A A A 选(D)13.元素与位置:以冠军为位置,选人:57 7 7 7 77 14.432756002357 5 4 3 2120 ;4 3 224 15.分步:5 4 3 3180 填 180 16.消序:99667 8 9AA =504 或分步插空:7 8 9=504 或39A 懂英语 1 懂日语 5 6 A 4 B 8 8 夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多
30、少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 11 17.先分组后分配:2223642333C C CAA 或位置分析:222642C C C 18.先分组后分配:32136313C C C A 19.位置分析:31228542C C C C 20.(1)仿 17 题;(2)先分组后分配:32136313C C C A 21.先分组后分配:3323852322C C CAA 或分类,先确定住两人的房间位置分析:12333863C C C C 重复题目:先分组后分配:2343C
31、A 或分类位置分析:3211421C C C 22.捆绑:53253288128A A AA 选(B)23.插空:4345A A 24.插空:34A 25.插空:4245A A 26.插空:3334A C 27.插空:3334A A 28.(A)38C 29.隔板法:63999 8 7843 2 1CC 选(A)30.1o先在编号为 2、3 的 2 个盒子分别放入 1 个小球、2 个小球;2o对余下 7 个小球用隔板法2615C。选(C)31.对应的思想:100 名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99 名选手,每淘汰 1 名选手,对应一场比赛。故要举行99 场比赛。夏令营活动
32、已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必惠来一中数学组 方文湃 12 32.解法一:找规律:固定小加数.小加数为 1 时,大加数只有 20 这 1 种取法;小加数为 2 时,大加数有 19 或 20 两种取法;小加数为 3 时,大加数为 18,19 或 20 共3 种取法小加数为 10 时,大加数为 11,12,20 共 10 种取法;小加数
33、为 11 时,大加数有 9 种取法小加数取 19 时,大加数有 1 种取法.由分类计数原理,得不同取法共有 1+2+9+10+9+2+1=100 种.法二:固定和的值.有和为 21,22,39 这几类,依次有取法 10,9,9,8,8,2,2,1,1种.由分类计数原理得不同取法共有 10+9+9+2+2+1+1=100种.以上两种方法是两种不同的分类。33.解:列表排出所有的分配方案,共有 3+3+3=9种,或3 3 1 19 种 34.(1)44102C(2)210C (3)1221092CC 35.解:根据 a,b,c,d对应的象为 2 的个数分类,可分为三类:第一类,没有一个元素的象为
34、2,其和又为 4,则集合 M所有元素的象都为 1,这样的映射只有1 个 第二类,有一个元素的象为 2,其和又为 4,则其余 3 个元素的象为 0,1,1,这样的映射有112432C C C=12 个 第三类,有两个元素的象为 2,其和又为 4,则其余 2 个元素的象必为 0,这样的映射有2242C C=6个 根据加法原理共有 1+112432C C C+2242C C=1+12+6=19 个 夏令营活动已知共有种不同的方案那么男女同学的人数是男同学人女同学人男同学人女同学人男同学人女同学人男同站需要两种不同车票那么原有的车站有个个个个用这六个数字可以组成多少个数字不重复的三位数可以组成多少个数可以组成多少个大于小于的数字不重复的四位数二注意附加条件人排成一列甲乙必须站两端有多少种不同排法甲乙必