2023年八年级数学上册知识点总结归纳全面汇总归纳北师大版1.pdf

上传人:Q****o 文档编号:91176630 上传时间:2023-05-22 格式:PDF 页数:14 大小:703.82KB
返回 下载 相关 举报
2023年八年级数学上册知识点总结归纳全面汇总归纳北师大版1.pdf_第1页
第1页 / 共14页
2023年八年级数学上册知识点总结归纳全面汇总归纳北师大版1.pdf_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2023年八年级数学上册知识点总结归纳全面汇总归纳北师大版1.pdf》由会员分享,可在线阅读,更多相关《2023年八年级数学上册知识点总结归纳全面汇总归纳北师大版1.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备 欢迎下载 数学(八年级上册)知识点总结(北师大版)第一章 勾股定理 1、勾股定理-已知直角三角形,得边的关系 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即222cba 2、勾股定理的逆定理-由边的关系,判断直角三角形 如果三角形的三边长 a,b,c 有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数 a,b,c,称为勾股数。常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平

2、方。即当 a 为奇数且 ab 时,如果2bca,那么 a,b,c就是一组勾股数.如:(3,4,5)(5,12,,13)(7,24,25)(9,40,41)(2)大于 2 的任意偶数,2n(n 1)都可构成一组勾股数分别是:222,1,1n nn 如:(6,8,10)(8,15,17)(10,24,26)4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度/斜边上的高线/周长/面积(3)判定三角形形状:222abc 锐角三角形,222abc直角三角形,222abc钝角三角形 判定直角三角形 a.找最长边;

3、b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状 第二章 实数 1.无理数的引入。无理数的定义无限不循环小数。学习必备 欢迎下载 20200002233.无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数 就叫做 的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做 的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数 的立方等于,即,那么这个数就叫做 的立方根,记为xaxaxaaaaxaaaxaxaxaa 30.实数及其相关概念

4、概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。一、实数的概念及分类 1、实数的分类 无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0 负实数正实数实数 0 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一

5、时之,归纳起来有四类:(1)开方开不尽的数,如32,7等根号 a(a 为非完全平方数或非立方数)。(2)有特定意义的数,如圆周率(=3.14159265),或化简后含有 的数,如3+8等;(3)有特定结构的数,如 0.1010010001;0.585885888588885(相邻两个 5 之间 8 的个数逐次加 1 等;(4)某些三角函数值,如 sin60o等;二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反

6、之亦成立。2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 解

7、题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12 732.13 236.25.三、平方根、算数平方根和立方根 1平方根和算术平方根:(1)概念:如果2xa,那么x是a的平方根,记作:a;读作“正、负根号a”,其中a叫做a的算术平方根,读作根号a。(2)性质:当a0 时,a0;当a时,a无意义;2aa;2aa。(区分、)性质:正数和零的算术平方根都只有一个,零的算术平方根是零。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。(3)开平方:求一个数 a 的平方

8、根的运算,叫做开平方。注意:a的双重非负性:00aa (开平方的被开方数的条件)(算术平方根的非负性)2立方根:(1)概念:若3xa,那么x是a的立方根(或三次方根),记作:3a;(2)性质:33aa;33aa;3a3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。区分:平方根、立方根的性质 根源:开平方是平方的逆运算;开立方是立方的逆运算。正数和负数的平方后为正,所以,只有非 负数才可以开平方,因此一个非 0 正数开平方后有 2 个;而任何数的立方后的符号与原数的 符号一致,所以,任何数都可以开立方,一个数

9、开立方后只有 1 个,符号与原数的符号也一 致。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 边的总比左边的大;两个负数,绝对值大的反而小。在数轴上,右边的点表示的数比左边的点表 示的数大。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数,,0baba

10、 ,0baba baba0(3)求商比较法:设 a、b 是两正实数,;1;1;1babababababa(4)绝对值比较法:设 a、b 是两负实数,则baba。(5)平方法:设 0,0ab,则 22abab 设 0,0ab,则 baba22。同号的有理数与无理数、同号的无理数与无理数大小比较时常用平方法。如:比较 3 62与3.4;3 6与53(6)倒数法:设0,0ab,则11abab;设0,0ab,则11abab 规律:同号取倒(数)反向 五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数,即:0aa 中。2、性质:(1)非负性0a (2))0()(2 aaa (

11、2a中前提,被开方数0a)(3)aa2,(0),(0)a aa a(2a中隐含被开方数20a)(4))0,0(babaab;()0,0(baabba)(前提根号要有意义)系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载(5))0,0(bababa ;()0,0(bababa)(前提式子和根号要有意义,)拓展:三个重要非负数:20,0,0aaa.注意:非负数之和为 0 它们都是 0.3、运算结果若含有“a”形式,必须满足:(1)被开方数的因数

12、是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律 加法交换律 abba 加法结合律 )()(cbacba 乘法交换律 baab 乘法结合律 )()(bcacab 乘法对加法的分配律 acabcba)((4)与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,

13、即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。第三章 位置的确定 一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x 轴和 y 轴统称坐标系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 四三二一0 xy0 xyPab(+

14、,-)(-,-)(-,+)(+,+)0 xyBACDx2y2x3y3y1x1x4y40 xyA(x1,0)D(0,y4)B(0,y2)C(x3,0)45450 xyBACD轴。它们的公共原点 O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念 对于平面内任意一点 P,过点 P分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P的横坐标

15、、纵坐标,有序数对(a,b)叫做点 P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间 有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba 时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征(结合图形,过点 P分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数,x y在坐标轴的正向为正,负向为负)点11(,)A xy在第一象限110,0 xy 点22(,)B xy在第二象限220,0 xy 点33(,)Cxy在第三象限330,0 xy 点44(,

16、)Dxy在第四象限440,0 xy(2)、坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上x 与 y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数(4)、和坐标轴平行的直线上点的坐标的特征 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任

17、意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 0 xyFEGH位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。(5)、关于 x 轴、y 轴或原点对称的点的坐标的特征 点 P与点P关于 x 轴对称(上下)横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x 轴的对称点为P(x,-y)点 P与点P关于 y 轴对称(左右)纵坐标相等,横坐标互为相反数,即点 P(x,y)关于 y 轴的对称点为P(-x,y)点 P与点P关于原点对称横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为P(-x,-y)

18、规律:关于谁对称谁不变,另一个变相反;关于原点对称,两个分别变相反。(6)、点到坐标轴及原点的距离(结合图形理解)点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于y(2)点 P(x,y)到 y 轴的距离等于x(3)点 P(x,y)到原点的距离等于22yx(由勾股定理可得)三、坐标变化与图形变化的规律:坐标(x,y)的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a,y a 放大(缩小)为原来的 a 倍 x(-1)或 y(-1)关于 y 轴或 x 轴对称 x(-1),y(-1)关于原点成中心对称 xa或ya,其中0a 沿 x 轴

19、()左(+)右或 y 轴(+)上()下平移 a 个单位 xa,ya,其中0a 沿 x 轴()左(+)右平移 a 个单位,再沿 y 轴(+)上()下平移 a 个单 0 xyP(x,y)P(-x,y)x-x0 xyP(x,y)P(x,-y)y-y0 xyP(x,y)P(-x,-y)y-yx-x系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 第四章 一次函数 一、函数:一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地

20、就确定了一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为 0)、二次根式(偶次根式)(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点(1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法 把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法 用图象表示函数关系的方法叫做图象法。四、由函

21、数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量 x,y 间的关系可以表示成bkxy(k,b 为常数,k0)的形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。特别地,当一次函数bkxy中的 b=0 时(即kxy)(k 为常数,k0),称 y 是 x 的正比例函数。2、一次函数的图像:所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征

22、:系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 321000.0kbbb 321000.0kbbb、一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy 的图像是经过原点(0,0)的直线。、由于一次函数ykxb的图象是一条直线,所以一次函数ykxb的图象也称为直线ykxb。、由于两点确定一条直线,因此在画一次函数ykxb的图象时,只要描出:与x轴的交点(令0y,求出bxk),与y轴的交点(令0 x,求出yb),即((0,),

23、(,0)bbk 两点即可,画正比例函数ykx的图象时,只要描出点(0,0),(1,k)即可。、k的正负决定直线的倾斜方向,k的大小决定直线的倾斜程度,即k越大,直线与x轴相交的锐角度数越大(直线陡),k越小,直线与x轴的相交的锐角度数越小(直线缓)。、b的正负决定直线与y轴交点的位置。当0b 时,直线与y轴的交于正半轴上。当0b 时,直线与y轴交于负半轴上。当0b 时,直线经过原点,是正比例函数,正比例函数是一次函数的特例。4、一次函数、正比例函数的图象和性质。当k0 时,y随x的增大而增大,图象从左到右呈上升趋势;当k0 时,y随x的增大而减小,图象从左到右呈下降趋势。函 数 图 象 性 质

24、 一次函数 ykxb (1)当0k 时,y随x的增大而增大,图象必经过一三象限。0b 时,过一二三象限 0b 时,只过一三象限 0b 时,过一三四象限时(2)当0k 时,y随x的增大而减小,图象必过二四象限。0b 时,过一二四象限 0b时,只过二四象限 0b 时,过二三四象限 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 正比例函数 ykx xyyx00 图象过原点 当0k 时,y随x的增大而增大,图象必过一三象限 当0k 时,y随x的

25、增大而减小,图象必过二四象限。5、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数 k。确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数 k 和 b。解这类问题的一般方法是待定系数法。(1)、确定正比例函数及一次函数表达式的条件 由于正比例函数(0)ykx k中只有一个待定系数k,故只需一个条件(如一对,x y的值或一个点)就可求得k的值。由于一次函数(0)ykxb k中有两个待定系数,k b,需要两个独立的条件确定两个关于,k b 的方程,求得,k b的值,这两个条件通常是两个点或两对,x y的值。(2)待定系数法 先设式

26、子中的未知系数,再根据条件求出未知系数,从而求出式子的方法叫做待定系数法。(3)用待定系数法确定一次函数表达式的一般步骤 设函数表达式为ykxb。将已知点的坐标代入函数表达式,解方程(方程组)。求出kb与的值,得函数表达式。6、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数,k0)的形式 而一次函数解析式形式正是 y=kx+b(k、b 为常数,k0)当函数值0y 时,即 kx+b=0 就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为 kx+b=0(k、b 为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值0y 时,求相应的自

27、变量的值 从图象上看,这相当于已知直线 y=kx+b 确定它与 x 轴交点的横坐标值 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 7、一次函数ykxb的图象与坐标轴交点求法:与x轴的交点:令0y,求出bxk,得(,0)bk;与y轴的交点:令0 x,求出yb,得(0,)b 第五章 二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程。2、二元一次方程的解 适合一个二元一次方程的一

28、组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法(1)代入(消元)法 (2)加减(消元)法(无论是代入消元法还是加减消元法,其目的都是将“二元一次方程”变为“一元一次方程”,所谓之“消元”)6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:每个二元一次方程都可以看成一次函数,直线 y=kx+b 上任意一点的坐标(,)m n都是它所对应的二元一次方程0kxyb 的解xmyn(2)一

29、次函数与二元一次方程组的关系:求二元一次方程组的解,可看成求两个一次函数图象的交点。二元一次方程组 111222a xb yca xb yc 的解xmyn可看作两个一次函数 1111acyxbb 系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载 和2222acyxbb 的图象的交点(,)m n。反之,可以通过求二元一次方程组的解,求出两个一次函数图象的交点 当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,

30、说明相应的二元一次方程组无解。7、在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为x或y;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。8、处理问题的过程可以进一步概括为:解答检验求解组方程抽象分析问题)(第六章 数据的代表 1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数 2、平均数(1)平均数:一般地,对于 n 个数,21nxxx我们把)(121nxxxn叫做这 n 个数的算术平均数,简称平均数,记为x。(2)加权平均数:、一组数据,21nx

31、xx的权分加为123,.,nw www,则称112233123.nnnx wx wx wx wwwww 为这n个数的加权平均数。(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三 项成绩的“权”分别为4、3、1,则加权平均数为:72450 388 143 1 )系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的学习必备 欢迎下载、如果n个数中,1x出现1f次,2x出现2f次,kx出现fk次(12ffnkfL),那么这n个的平均数可表示

32、为1 12 2x fxfxfk kxnL,这样的平均数x叫加权平均数,其中12,kfffL叫做权。如:某小组在一次数学测试中,有 3 人为 85 分,2 人为 90 分,5 人为 100 分,则该小组的平均分为:85 3902 100 593.5325 3、众数 众数指的是一组数据中出现次数最多的那个数据。4、中位数 中位数指的是 n 个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数常偶数都可构成一组勾股数分别是如常见题型应用已知任意两条边的长度角三角形判定直角三角形找最长边比较长边的平方与另外两条较短边的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁