2022八年级数学教案.docx

上传人:l*** 文档编号:9116489 上传时间:2022-03-30 格式:DOCX 页数:60 大小:47.31KB
返回 下载 相关 举报
2022八年级数学教案.docx_第1页
第1页 / 共60页
2022八年级数学教案.docx_第2页
第2页 / 共60页
点击查看更多>>
资源描述

《2022八年级数学教案.docx》由会员分享,可在线阅读,更多相关《2022八年级数学教案.docx(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022八年级数学教案八年级数学教案1教学目标:1. 掌握三角形内角和定理及其推论;2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。教学重点:三角形内角和定理及其推论。教学难点:三角形内角和定理的证明教学用具:直尺、微机教学方法:互动式,谈话法教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情

2、境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2 你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容

3、自然合理。2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。问题1 观察:三个内角拼成了一个什么角?问题2 此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知

4、道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?学生回答后,电脑显示图表。(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?问题2 三角形一个外角与它不相邻的两个内角有何关系?问题3 三角形一个外角与其中的一个不相邻内角有何关系?其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。这样安

5、排的目的有三点:第一,理解定理之后的延伸推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。3、三角形三个内角关系的定理及推论引导学生分析并严格书写解题过程八年级数学教案2第11章平面直角坐标系11。1平面上点的坐标第1课时平面上点的坐标(一)教学目标1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。3。能在方格纸中建立适当的平面直角坐标系来描述点的

6、位置。1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。重点难点认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。理解坐标系中的坐标与坐标轴上的数字之间的关系。教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。生乙:我在第4行第7列。师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两

7、个数字确定下来。二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?生:用一个有序的实数对来表示。师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?生:可以。教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为正方向;竖直

8、的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。学生操作,教师巡视。教师指正学生易犯的错误。教师边操作边讲解:如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0

9、;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。教师多媒体出示:师:如图,请同学们写出A、B、C、D这四点的坐标。生甲:A点的坐标是(5,4)。生乙:B点的坐标是(3,2)。生丙:C点的坐标是(4,0)。生丁:D点的坐标是(0,6)。师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,2),怎样在平面直角坐标系中找到这个点呢?教师边操作边讲解:在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是2的点,过这一点向y轴作垂线,纵坐标是2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为2,所以这就

10、是坐标为(3,2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,4),B(0,5),C(2,3),D(5,6)这几个点。学生动手作图,教师巡视指导。三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?生:都一样。师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?生:能。第二象限内的点的坐标的符号为(,+

11、),第三象限内的点的坐标的符号为(,),第四象限内的点的坐标的符号为(+,)。师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(,+),你能判断这点是在哪个象限吗?生:能,在第二象限。四、练习新知师:现在我给出几个点,你们判断一下它们分别在哪个象限。教师写出四个点的坐标:A(5,4),B(3,1),C(0,4),D(5,0)。生甲:A点在第三象限。生乙:B点在第四象限。生丙:C点不属于任何一个象限,它在y轴上。生丁:D点不属于任何一个象限,它在x轴上。师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点

12、。学生作图,教师巡视,并予以指导。五、课堂小结师:本节课你学到了哪些新的知识?生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。教师补充完善。教学反思物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。第2课时平面上点的坐标(二)教学目标进一步学习和应用平面直角坐标系,认识

13、坐标系中的图形。通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。重点难点理解平面上的点连接成的图形,计算围成的图形的面积。不规则图形面积的求法。教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,3)这三个点。学生作图。教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什

14、么图形?生甲:三角形。生乙:直角三角形。师:你能计算出它的面积吗?生:能。教师挑一名学生:你是怎样算的呢?生:AB的长是52=3,BC的长是1(3)=4,所以三角形ABC的面积是34=6。师:很好!教师边操作边讲解:大家再描出四个点:A(1,2),B(2,1),C(2,1),D(3,2),并将它们依次连接起来看看形成的是什么图形?学生完成操作后回答:平行四边形。师:你能计算它的面积吗?生:能。教师挑一名学生:你是怎么计算的呢?生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是43=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样

15、一个连接成的图形:教师多媒体出示下图:八年级数学教案3知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?新课:问题:(1)如图是某日的气温变化图。 这张图告诉我们哪些信息? 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?(2)收音机上的刻度盘的波长

16、和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数: 这表告诉我们哪些信息? 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。范例:例1 判断下列变量之间是不是函数关系:(5) 长方形的宽一定时,其长与面积;(6) 等腰三角形的底边长与面积;(7) 某人的年龄与身高;活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系思

17、考:自变量是否可以任意取值例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。(1) 写出表示y与x的函数关系式.(2) 指出自变量x的取值范围.(3) 汽车行驶200km时,油箱中还有多少汽油?解:(1)y=50-0.1x(2)0500(3)x=200,y=30活动2:练习教材9页练习小结:(1)函数概念(2)自变量,函数值(3)自变量的取值范围确定作业:18页:2,3,4题八年级数学教案4一、学习目标1多项式除以单项式的运算法则及其应用。2多项式除以单项式的运算算理。二、重点难点重点:多项式除

18、以单项式的运算法则及其应用。难点:探索多项式与单项式相除的运算法则的过程。三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1计算下列各式:(1)(am+bm)m;(2)(a2+ab)a;(3)(4x2y+2xy2)2xy。2提问:说说你是怎样计算的;还有什么发现吗?(三)总结法则1多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX2本质:把多项式除以单项式转化成XXXXXXXXXXXXXX四、精讲精练例:(1)(12a36a2+3a)3a;(2)(21x4y335x3y2+7x2y2)(7x2y);(3)(x+y)2y(2x+y)8x

19、2x;(4)(6a3b3+8a2b4+10a2b3+2ab2)(2ab2)。随堂练习:教科书练习。五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。八年级数学教案5教学目标:(1)理解通分的意义,理解最简公分母的

20、意义;(2)掌握分式的通分法则,能熟练掌握通分运算。教学重点:分式通分的理解和掌握。教学难点:分式通分中最简公分母的确定。教学工具:投影仪教学方法:启发式、讨论式教学过程:(一)引入(1)如何计算:由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。(2)如何计算:(3)何计算:引导学生思考,猜想如何求解?(二)新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。2.通分的依据:分式的基本性质.3.通分的关键:确定几个分式的最简公分母.通常取各分母的所

21、有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.根据分式通分和最简公分母的定义,将分式通分:最简公分母为:然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。例1 通分:xxx分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。解: 最简公分母是12xy2,小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.解:最简公分母是10a2b2c2,由学生归纳最简公分母的思路。分式通分

22、中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。八年级数学教案6一、教材分析1、特点与地位:重点中的重点。本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。(2)难点:求解最短路径算法的程序实现。3、教学安排:最短路径问题包含两种情

23、况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。二、教学目标分析1、知识目标:掌握最短路径概念、能够求解最短路径。2、能力目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。三、教法分析课前充分准备,研读教材,查

24、阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。3、课后给学生布置同类型任务,加强练习。五、教学过程分析(一)课前复习(35分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。教学方法及注意事项:(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。(2)

25、提示学生“温故而知新”,养成良好的学习习惯。(二)导入新课(35分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。(三)讲授新课(2530分钟)1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。

26、(35分钟)教学方法及注意事项:主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。教学方法及注意事项:启发式教学,如何实现按路径长度递增产生最短路径?结合案例分析求解

27、最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。(四)课堂小结(35分钟)1、明确本节课重点2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?(五)布置作业1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。六、教学特色以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。八年级数学教案7知识结构:重点与难点分析:本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角

28、形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.教法建议:本节课教学方

29、法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:(1)参与探索发现,领略知识形成过程学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。(2)采用“类比”的

30、学习方法,获取知识。由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。(3)总结,形成知识结构为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?一.教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻

31、辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二.教学重点:等腰三角形的判定定理三.教学难点:性质与判定的区别四.教学用具:直尺,微机五.教学方法:以学生为主体的讨论探索法六.教学过程:1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

32、(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,ABC中,B=C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

33、(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理.证明三角形是等边三角形的方法:等边三角形定义;推论1;推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性它与相邻的内角互补;它等于与它不相邻的两个内角的和.要证A

34、B=AC,可先证明B=C,因为已知1=2,所以可以设法找出B、C与1、2的关系.已知:CAE是ABC的外角,1=2,ADBC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,B=D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证CBD=CDB,但已知B=D,由AB=AD可证ABD=ADB,从而证得CDB=CBD,推出CB=CD.证明:连结BD,在 中, (已知)(等边对等角)(已知)即(等教对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出

35、边角关系.2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE/BC交AC与F,交AB于E,求证:EF=BE-CF.分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE/BC(已知),BE=DE,同理DF=CF.EF=DE-DFEF=BE-CF小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.九.板书设计八年级数学教案8教学目标:1.了解算术平方根的概念,会用根号表

36、示正数的算术平方根,并了解算术平方根的非负性。2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。教学重点:算术平方根的概念。教学难点:根据算术平方根的概念正确求出非负数的算术平方根。教学过程一、情境导入请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.二、导入新课:1、提出问题:(书P68页的

37、问题)你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式 =a (x0)中,规定x = .2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.3、 想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。4、例1 求下

38、列各数的算术平方根:(1)100;(2)1;(3) ;(4)0.0001三、练习P69练习 1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓励学生探究。问题:这个大正方形的边长应该是多少呢?大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的.值吗?建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.五、小结:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根六、课外

39、作业:P75习题13.1活动第1、2、3题八年级数学教案9教学目标:1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。4、能利和计算器求一组数据的算术平均数。教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。教学难点:对于平均数、中位数、众数在不同情境中的应用。教学方法:归纳教学法。教学过程:一、知识回顾与思考1、平均数、中位数、众数的概念及举例。一般地对于n个数X1,Xn把(X1+X2+Xn)叫做这n

40、个数的算术平均数,简称平均数。如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。众数就是一组数据中出现次数最多的那个数据。如3,2,3,5,3,4中3是众数。2、平均数、中位数和众数的特征:(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。(2)平均数能充分利用数据提供的信息,在生

41、活中较为常用,但它容易受极端数字的影响,且计算较繁。(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。3、算术平均数和加权平均数有什么区别和联系:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。4、利用计算器求一组数据的平均数。利用科学计算器求平均数的方法计算平均数。二、例题讲解:例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如

42、下:每人销售件数 1800 510 250 210 150 120人数 113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?三、课堂练习:复习题A组四、小结:1、掌握平均数、中位数与众数的概念及计算。2、理解算术平均数与加权平均数的联

43、系与区别。五、作业:复习题B组、C组(选做)八年级数学教案10教学目标:知识目标:1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。3、会对一个具体实例进行概括抽象成为数学问题。能力目标:1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。情感目标:1、经历函数概念的抽象概括过程,体会函数的模型思想。2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。教学重点:掌握函数概念。判断两个变量之间的关系是否可看作函数。能把实际问题抽象概括为函数问题。教学难点:理解函数的概念。能把实际问题抽象概括为函数问题。教学过程设计:一、创设问题情境,导入新课师:同学们,你们看下图上面那个像车轮状的物体是什么?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁