《2023年《反比例函数的图像和性质》.pdf》由会员分享,可在线阅读,更多相关《2023年《反比例函数的图像和性质》.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 欢迎下载 反比例函数的图像和性质(1)一、内容和内容解析 反比例函数是最基本的初等函数之一,是学习后续各类函数的基础 反比例函数的核心内容是反比例函数的概念、图象和性质 反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在 反比例函数的图象和性质,蕴含着丰富的数学思想首先,反比例函数图象和性质,本身就是“数”与“形”的统一体通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个
2、方面共同分析解决问题的优势其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用再次,将函数中变量、之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐 标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想 对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后
3、的再一次强化教材中呈现的“函数概念函数的图象和性质函数的实际应用”的结构,是学习初等函数时不可或缺的使学生理解这样的“同构现象”,对于明确学习任务,建立完善的认知结构也将是非常有意义的再有,用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析、的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律另外,利用图象“特征”确定函数“特性”,也是初中阶段研究函数性质的常用方法 学习必备 欢迎下载 此外,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃图象由由
4、“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不折射出对函数概念本质属性认识的进一步深化 因此,学好本节课内容将为今后的函数学习奠定坚实的基础 教学重点:反比例函数的图象和性质 二、目标和目标解析(一)教学目标 1会画反比例函数图象,理解反比例函数的图象和性质 2感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想根据反比例函数的图象探究其性质 3培养学生的观察、分析、探究、归纳及概括能力(二)目标解析 1本节教学内容的脉络是:先使用描点法画出反比例函数的图象,然后依据图象分析、探究、归纳得到函数的性质因此,准确画出
5、反比例函数的图象,是探究反比例函数性质的前提此时,虽然学生已经学过用描点法画函数图象,但是由于反比例函数图象的特殊性,会画反比例函数的图象,仍是学习中的目标之一通过列表、描点、画出反比例函数的图象,进而观察、分析、探究、归纳、概括,得到反比例函数的性质,可以进一步加深对函数三种表示方法(列表法、解析式法和图象法)的理解;数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 2数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期
6、四个阶段,而非能复制与灌输在探究反比例函数性质时,让学生领悟到数形结合思想、转化思想、变化与对应思想的存在,并能运用这些数学思想观察、分析反比例函数的图象,探究、归纳、概括反比例函数的性质 3通过对反比例函数性质探究,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,提高学生思维能力 三、教学问题诊断分析 对于用描点法画函数的图象,学生已经学过,但因当时处于函数学习的初始阶段,重点只是让学生掌握用描点法画函数图象的“三步曲(列表、描点、连线)”,所以,学生对每步要求的理解并不深刻因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量的取值缺乏代表性及忽
7、略等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与轴、轴“越来越靠近”但不相交的趋势不易理解教学时,应注意有针对性的引导,注意从解析式的分析入手,让学生先进行“数”(,,)、“式”(解析式中、的反比例关系)的分析,进而过渡到对“形”(图象)的认识 在学习一次函数的时候,学生已经历过观察、分析图象的特征,抽象、概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解、因此,通过类比,结合反比例函数的图象探究性质,从使用的方法上不会存在障碍,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,具有自身的特殊性,故对性质的
8、深刻理解和掌握,对性质探究中的数学思想的体会和运用,还存在一定的困难 教学中,应注重强调说明由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动 教学难点:准确画出反比例函数的图象,理解反比例函数的性质,并能灵活应用 数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 四、教学支持条件分析 根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板软件为平台,绘制反比例函数
9、图象,同时辅之以“点跟踪”等手段,通过动态的演示,观察相关数值的变化,研究图象的变化趋势,抽象概括当自变量变化时,对应的函数值的变化规律,进而探究反比例函数的性质 五、教学过程设计 (一)创设情境,引入新知 问题 1:我们已经学习了正比例函数的哪些内容?是如何研究的?以正比例函数为例 师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充,并将答案填写在黑板的表格中,强调是从形状、位置、变化趋势三个方面去研究 【设计意图】通过复习正比例函数的图象和性质,以及研究函数的一般方法,为学习反比例函数的图象和性质做好铺垫(二)观察探究,形成新知 问题 2:反比例函数的图象是什么样的?数特性
10、以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 以画出反比例函数的图象为例,教师引导学生经历列表、描点、连线的过程(1)列表:-6-5-4-3-2-1 1 2 3 4 5 6 列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;(2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自
11、变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象 师生活动:教师引导学生列表、描点、作图;展示学生作品;教师板书示范,并通过课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.【设计意图】图象是直观地描述和研究函数的重要工具,通过经历用描点法画出反比例函数图象的基本步骤,可以使学生对反比例函数先有一个初步的感性认识 数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 问题 3:请观察反比例函
12、数的图象,有哪些特征?师生活动:教师引导学生观察,类比正比例函数,归纳说出反比例函数图象的形状、位置、变化趋势及其函数的增减性【设计意图】通过类比正比例函数,引导学生观察图象的形状、位置、变化趋势,感受“形”的特征,感受自变量与函数值之间变化与对应的关系,使学生对反比例函数的图象和性质形成初步的印象 问题 4:是不是所有的反比例函数的图象都具有这样的特征呢?以讨论反比例函数为例 在教师引导下,学生借鉴画反比例函数的图象的经验,自主画出反比例函数的图象,教师巡视指导作图完成后,学生展示作品,并说出该函数图象的特征,教师适时点评【设计意图】通过再次画出反比例函数的图象,使学生巩固前面已获得的作图经
13、验,提高学生利用描点法画出函数图象的能力同时,在总结说出反比例函数的图象特征的过程中,使学生增强对图象的观察、感知、分析、概括的能力,以及经历通过画出函数图象,并利用图形研究函数性质的过程 问题 5:反比例函数与的图象有什么共同特征?有什么不同点?是由什么决定的?数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 师生活动:教师启发学生对比、思考,组织学生讨论,引导学生关注反比例系数“”的作用【设计意图】学生通过观察比较,总结这两个反比例函数
14、图象的特征,在活动中,让学生自己去观察、发现、总结,实现学生主动参与,探究新知的目的 问题 6:当 取不同的值,上述结论是否适用于所有的反比例函数?教师演示课件,赋予不同的 值,观察所得到的不同的反比例函数图象的特征,引导学生归纳“变化中的规律性”然后,从解析式的角度,引导学生分析上述结论的合理性【设计意图】通过计算机动态演示,验证猜想,使学生经历从特殊到一般的过程,加强对反比例函数图象“特征”和函数“特性”以及它们之间的相互转化关系的认识 问题 7:总结反比例函数()图象的特征和性质 教师帮助学生梳理、归纳,填写表格:函数 图象形状 图象位置 图象变化趋势 函数增减性 【设计意图】通过归纳,
15、培养学生抽象概括能力 数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载(三)巩固提高,应用新知 课堂练习:1下列图象中,可以是反比例函数的图象的是()2已知反比例函数的图象如图所示,则 0,且在图象的每一支上,值随的增大而 3.已知反比例函数的图象过点(2,1),则它的图象在 象限,且 0 数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再
16、到性质观察图象探究性质充分体现了由学习必备 欢迎下载 4.若反比例函数()的图象上有两点(,),(,),且,则的值是()(A)正数(B)负数(C)非正数(D)非负数【设计意图】通过一系列的练习,可以实现知识向能力的转化(四)归纳反思,深化新知 问题 8:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对反比例函数的图象和性质有一个较为整体、全面认识,同时,使学生养成良好的学习习惯 布置作业:(1)基础达标:教材中练习的第 1、2 题,习题的第 3 题;(2)反思提升
17、:将反比例函数(为常数,)与正比例函数(为常数,)进行对比,可以从如下方面考虑:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?六、目标检测设计 1反比例函数的图象在()(A)第一、二象限(B)第一、三象限(C)第二、三象限(D
18、)第二、四象限 2在同一直角坐标系中,函数与的图象大致是()3写出一个反比例函数,使得该反比例函数的图象在第一、三象限,该函数可以是 ;若点在该函数的图象上,则点的坐标可以是 (分别写出一个即可)数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由学习必备 欢迎下载 4若双曲线,当时,随的增大而增大,则的取值范围是 5已知反比例函数,(1)填写表格中相应的的值:-6-5-4-3-2-1 1 2 3 4 5 6 (2)根据表中的数据,描点画出函数的图象 6 某住宅小区要种植一个面积是 1000 m2的矩形草坪,设草坪的长为(单位:m),宽为(单位:m),(1)与之间有怎样的函数关系;(2)画出该函数的图象;(3)若限定草坪的宽大于 10 m 且不超过 20 m,求草坪的长的范围 数特性以及它们之间的相互转化关系这也正是反比例函数的本质属性所了数形结合的思想方法这在学习数轴平面直角坐标系时学生已经接触过取值范围到作图列表描点连线再到性质观察图象探究性质充分体现了由