第七讲分析时代课件.ppt

上传人:飞****2 文档编号:91097872 上传时间:2023-05-21 格式:PPT 页数:34 大小:4.38MB
返回 下载 相关 举报
第七讲分析时代课件.ppt_第1页
第1页 / 共34页
第七讲分析时代课件.ppt_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《第七讲分析时代课件.ppt》由会员分享,可在线阅读,更多相关《第七讲分析时代课件.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、微积分的发展泰勒(英,1685-1731)法学博士 进入牛顿和莱布尼茨发明微积分优先权争论委员会,英国皇家学会秘书 1715年出版正和反的增量法 泰勒定理的价值由拉格朗日(法,1717-1783)发现,证明由柯西(法,1789-1851)给出 与约翰伯努利(瑞,1667-1748)关于泰勒公式优先权之争 后期转向宗教和哲学的写作 微积分的发展 皇家学会会员,爱丁堡大学教授 1742年流数论 墓碑上刻“曾蒙牛顿推荐”麦克劳林(英,1698-1746)斯特林(英,1692-1770)皇家学会会员 1730年微分法微积分的发展 1686到英国,1718年出版机会的学说 英国皇家学会会员,进入牛顿和莱

2、布尼茨发明微积分优先权争论委员会 1730年分析杂论棣莫弗(法,1667-1754)n 1707-1730年棣莫弗定理微积分的发展伯努利家族微积分的发展伯努利家族微积分的发展雅格布伯努利(瑞,1654-1705)“我违背父亲的意愿,研究星星。”1687年巴塞尔大学数学教授 17世纪牛顿和莱布尼茨之后最先发展微积分的人 解析几何、微积分、变分法、概率论 1694年微分学方法 1698年证明调和级数的发散性微积分的发展约翰伯努利(瑞,1667-1748)1694年医学博士 解析几何、微分方程、变分法 18世纪初分析学的重要奠基者之一,欧拉(瑞,1707-1783)的老师 1700年左右发展了积分法

3、 1742年积分学教程(写于1691-1692)洛比达(法,1661-1704)法则,1696年无穷小分析微积分的发展丹尼尔伯努利(瑞,1700-1782)医学博士、植物学教授、生理学教授、物理学教授、哲学教授 圣彼得堡:17251733年 巴塞尔:17331782年 1738年流体动力学 第一个把牛顿和莱布尼茨的微积分思想连接起来的人 把微积分、微分方程应用到物理学,研究流体力学问题、物体振动和摆动问题,为数学物理方法的奠基人微积分的发展欧拉(瑞,1707-1783)圣彼得堡科学院(1727-1741,1766-1783)柏林科学院(1741-1766)1748年无穷小分析引论、1755年微

4、分学原理、1768-1770年积分学原理 最多产的数学家、欧拉全集84卷 李善兰译的代数学(1859)等著作记载了欧拉的学说“读读欧拉,他是我们大家的老师”“四杰”:阿基米德、牛顿、欧拉、高斯微积分的发展n 18世纪最伟大的数学家、分析的化身、“数学家之英雄”瑞士法郎上的欧拉微积分的发展法国启蒙运动n伏尔泰(1694-1778)、孟德斯鸠(1689-1755)、卢梭(1712-1778)n狄德罗(1713-1784)的百科全书派n高举人文主义旗帜,把技术、科学、艺术并列为人类知识三大门类n17511772,17卷正文,11卷图版,1777年又出5卷增补卷基本精神:反对君权神授、主张天赋人权百科

5、全书派群像达朗贝尔(法,1717-1783)自学成才,进入巴黎科学院:院士、终身秘书 1751-1757年与狄德罗(1713-1784)共同主编百科全书“科学处于17世纪的数学时代到18世纪的力学时代,力学应该是数学家的主要兴趣。”动力学、数学手册 数学分析的重要开拓者之一,其成就仅次于欧拉、拉格朗日、拉普拉斯和丹尼尔伯努利微积分的发展拉格朗日(法,1736-1813)数学、力学和天文学中都有重大历史性贡献,分析学中仅次于欧位的最大开拓者,论著超过500篇 1754年(18岁)发现莱布尼茨公式 1755年任数学教授(都灵时期:1754-1766)1788年分析力学(柏林时期:1766-1787

6、)1797年解析函数论(巴黎时期:1787-1813)分析力学的创立者、天体力学的奠基者 1799年伯爵,1813年帝国大十字勋章 微积分的发展伯克莱主教(爱尔兰,1985)微积分的发展:综述l 积分技术l 多元函数l 无穷级数l 函数概念l 分析严格化的尝试伯克莱(爱尔兰,1685-1753):分析学家,或致一位不信神的数学家(1734)“这些消失的增量究竟是什么呢?它们既不是有限量,也不是无限小,又不是零,难道我们不能称它们为消逝量的鬼魂吗?”形式化观点 极限观点数学新分支的形成l 常微分方程l 偏微分方程l 变分法l 微分几何l 概率论常微分方程l 莱布尼茨、惠更斯(荷,1629-169

7、5)、约翰伯努利给出问题的解q 1690年雅格布伯努利(瑞,1654-1705)提出悬链线问题 初等解法常微分方程l 包含一个自变量和它的未知函数以及未知函数的导数的等式l 形成和发展是与力学、天文学、物理学及其他自然科学技术的发展互相促进和互相推动的q 分离变量法q 变量代换法q 积分因子法q 黎卡提方程q 降阶法q 常系数线性方程2001年9月6日哈勃拍到的星体爆发星系 一阶偏微分方程:1772年拉格朗日(法,1736-1813)和1819年柯西(法,1789-1857)发现将其转化为一阶常微分方程组拉格朗日(法国,1958)偏微分方程l 包含未知函数以及偏导数的等式l 偏微分方程理论研究

8、一个方程(组)是否有满足某些补充条件的解,有多少个解,解的各种性质与求解方法,及其应用 1696年和1697年约翰伯努利(瑞,1667-1748)提出最速降线问题变分法l 研究泛函的极值的方法l Calculus of Variationsl 牛顿、莱布尼茨、洛比达、约翰伯努利、雅各布伯努利等解决欧拉(瑞士,1957)变分法n 1759年拉格朗日(法,1736-1813)引入变分的概念1728年欧拉(瑞,1707-1783)解决了测地线问题,1736年提出欧拉方程,1744年发表寻求具有某种极大或极小性质的曲线的方法n 1786年起勒让德(法,1752-1833)讨论了变分的充分条件 等时曲线

9、变分法康熙61年(16621722年)“康乾盛世 康乾盛世”(1661-1795(1661-1795年 年)雍正13年(17231735年)乾隆60年(17361795年)134年康熙南巡图(局部)(王翚,1698)清朝立国(16441911年)268年 18 世纪的中国数学中 中国 国经 经济 济18 世纪的中国数学荷兰格罗宁根大学经济学安格斯麦迪逊教授统计表“西学中源”清初承前启后、融会中西的数学家“历算第一名家”、“开山之袓”梅氏历算丛书辑要62卷代数、几何、三角18 世纪的中国数学(清 清,1633-1721,1633-1721年 年)q 梅彀成(1681-1763)赤水遗珍(1761

10、)引入“杜德美(法,1668-1720)法”18 世纪的中国数学q 明安图(1692-1765)、陈际新割圆密率捷法(1763,1774)格列高里(英,1638-1675)明安图(1692-1765)康熙:“即西洋算法亦善,原系中国算法,彼称为阿尔朱巴尔。阿尔朱巴尔者,传自东方之谓也。”康熙 康熙(1654-1722 1654-1722 年 年,在位 在位1662-1662-1722)1722)康熙“御定”、梅彀成等编纂律历渊源(100卷)(1721)其中:数理精蕴(53卷)(1690-1721)康熙二十八年(1689):此后每日轮班至养心殿,传授天文、数学、测量等西学。18 世纪的中国数学康

11、熙1713年在蒙养斋创建了算学馆 康熙皇帝(1654-1722年)彼得大帝(16721725年)18 世纪的中国数学路易十四(1638-1715)乾嘉学派18 世纪的中国数学乾隆 乾隆嘉庆(1711-1799(1711-1799年 年)(1760-1820年)纪晓岚(1724-1805年)四库全书(1773 1781年)18 世纪的中国数学四库全书著录的科技文献300余种、存目360余种。以数学、天学、农学、医学、生物学和地学方面的书籍最多。收录有“算经十书”、数书九章、测圆海镜、算法统宗等。四元玉鉴、杨辉算法等未收录。四库全书(1773 1781年)18 世纪末的数学家n 主导意见:数学的资

12、源已经枯竭.n 1754年狄德罗(法,1713-1784):“我敢说,不出一个世纪,欧洲就将剩不下三个大的几何学家了.”n 1781年拉格朗日(法,1736-1813):“在我看来,似乎数学矿井已挖掘很深了,除非发现新的矿脉,否则势必放弃它.”“牛顿只有一个.”n 1780年法国科学院报告:“几乎所有的分支里,人们都被不可克服的困难阻挡住了,所有这些困难好象是宣告我们的分析的力量实际上是已经穷竭了.”n 1781年孔多塞(法,1743-1794):“不应该相信什么我们已经接近了这些科学必定会停滞不前的终点,我们应该公开宣称,我们仅仅是迈出了万里征途的第一步.”外在源泉 内部动力18 世纪末的数学问题l 高于4次的代数方程的根式解l 欧几里得几何中平行线公设l 牛顿、莱布尼茨微积分算法的逻辑基础19世纪的代数、几何与分析l 代数学的新生l 几何学的变革l 分析的严格化进入现代数学时期第七讲思考题 1、谈谈您对于“读读欧拉,他是我们大家的老师”(拉普拉斯语)的看法。2、为何在“康乾盛世”中国数学明显落后于西方?3、试分析18世纪末数学家的主导意见:数学的资源已经枯竭。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁