《压弯构件原理分析.ppt》由会员分享,可在线阅读,更多相关《压弯构件原理分析.ppt(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章第三章 压弯构件的原理分析压弯构件的原理分析第第1章章 基本力学性能基本力学性能正截面的七种受力模式正截面的七种受力模式bhAsANcNcxnbhh0AsAseNxnfcfyAsfyAsCeeixnbhh0AsAs sAsNueexnfcfyAsCei轴压小偏压大偏压xn=nh0bhh0AsTs=sAsctxnCMycctcbscyeeN e0h0fyAsfyAsas1fcxh0fyAsfyAseeNu e0asllNtNtNttAs s小偏拉受弯轴拉大偏拉 基本假定基本假定 (1)截面平均应变符合平截面假定,钢筋与砼无相对滑移;)截面平均应变符合平截面假定,钢筋与砼无相对滑移;(2)截
2、面受拉区的拉力全部由钢筋承担,不考虑混凝土的抗拉作用;)截面受拉区的拉力全部由钢筋承担,不考虑混凝土的抗拉作用;(3)材料本构关系已知;)材料本构关系已知;(4)不考虑龄期、环境等影响。)不考虑龄期、环境等影响。正截面分析正截面分析 基本公式基本公式变形条件平衡方程:力的平衡弯矩平衡轴心受压短柱bhAsANcNc混凝土压碎钢筋凸出截面分析的基本方程NccAs ssss=Essys,hfy0=0.002ocfcc平衡方程变形协调方程物理方程(以fcu50Mpa为例)纵筋强度的影响偏心受压构件的试验研究Nfe0混凝土开裂混凝土全部受压不开裂构件破坏破坏形态与e0、As、As有关Ne0Ne0fcAs
3、fyAs sh0e0很小 As适中 Ne0Ne0fcAsfyAs sh0e0较小Ne0Ne0fcAsfyAs sh0e0较大 As较多 e0e0NNfcAsfyAs fyh0e0较大 As适中受压破坏(小偏心受压破坏)受拉破坏(大偏心受压破坏)界限破坏接近轴压接近受弯As bh0属于小偏心破坏形态属于小偏心破坏形态j但与钢筋面积有关,设计时无法根据上述条件判断。但与钢筋面积有关,设计时无法根据上述条件判断。界限破坏时:=b,由平衡条件得 fyAsNb代入并整理得:代入并整理得:由上式知,配筋率越小,由上式知,配筋率越小,e0b越小,随钢筋强度降低而降低,越小,随钢筋强度降低而降低,随混凝土强度
4、等级提高而降低,当配筋率取最小值时,随混凝土强度等级提高而降低,当配筋率取最小值时,e0b取得取得最小值,若实际偏心距比该最小值还小,必然为小偏心受压。最小值,若实际偏心距比该最小值还小,必然为小偏心受压。不对称配筋时,将最小配筋率及常用的钢筋和混凝土强度代入不对称配筋时,将最小配筋率及常用的钢筋和混凝土强度代入上式得到的上式得到的e0b大致在大致在0.3h0上下波动,平均值为上下波动,平均值为0.3h0,因此设,因此设计时,计时,对称配筋偏心受压构件计算时对称配筋偏心受压构件计算时矩形截面对称配筋偏心受压构件计算曲线分区矩形截面对称配筋偏心受压构件计算曲线分区、区:区:,仅从偏心距角度看,可
5、能为大偏压,也,仅从偏心距角度看,可能为大偏压,也区:两个判别条件是一致的,故为小偏心受压。区:两个判别条件是一致的,故为小偏心受压。区:两个判别条件结论相反,出现这种情况的原因是,虽然轴向压区:两个判别条件结论相反,出现这种情况的原因是,虽然轴向压力的偏心距较小,实际应为小偏心受压构件,但由于截面尺寸比较大,力的偏心距较小,实际应为小偏心受压构件,但由于截面尺寸比较大,与与与相比偏小,所以又出现与相比偏小,所以又出现。从图中可以很清楚地看出,。从图中可以很清楚地看出,区内的和均很小,此时,不论按大偏心受压还是按小偏心受区内的和均很小,此时,不论按大偏心受压还是按小偏心受压构件计算,均为构造配
6、筋。压构件计算,均为构造配筋。可能为小偏压,可能为小偏压,比较应为准确的判断。比较应为准确的判断。将大、小偏压将大、小偏压构件的计算公式以构件的计算公式以曲线的形式绘出,曲线的形式绘出,可以很直观地了解可以很直观地了解大、小偏心受压构大、小偏心受压构件的件的 M和和 N以及与以及与配筋率配筋率 之间的关系,之间的关系,还可以利用这种曲还可以利用这种曲线快速地进行截面线快速地进行截面设计和判断偏心类。设计和判断偏心类。矩形截面对称配筋偏心受压构件计算曲线矩形截面对称配筋偏心受压构件计算曲线矩形截面对称配筋偏心受压构件的计算曲线矩形截面对称配筋偏心受压构件的计算曲线不同不同长细长细比柱从加荷比柱从
7、加荷载载到破坏的关系到破坏的关系受压柱的纵向挠曲柱子屈曲(失稳)“一根细长柱子。当在端部荷载作用下受压时,它要一根细长柱子。当在端部荷载作用下受压时,它要缩短。与此同时,荷载位置要降低。一切荷载要降低它的缩短。与此同时,荷载位置要降低。一切荷载要降低它的位置的趋势是一个基本的自然规律。每当在不同路线之间位置的趋势是一个基本的自然规律。每当在不同路线之间存在着一个选择的时候,一个物理现象将按照最容易的路存在着一个选择的时候,一个物理现象将按照最容易的路线发生,这是另一个基本的自然规律。面临弯出去还是缩线发生,这是另一个基本的自然规律。面临弯出去还是缩短的选择,柱子发现在荷载相当小的时候,缩短比较
8、容易;短的选择,柱子发现在荷载相当小的时候,缩短比较容易;当荷载相当大时,弯出去比较容易。换句话说,当荷载达当荷载相当大时,弯出去比较容易。换句话说,当荷载达到它的临界值时,用弯曲的办法来降低荷载位置比用缩短到它的临界值时,用弯曲的办法来降低荷载位置比用缩短的办法更为容易些。的办法更为容易些。”建筑结构萨瓦多里,穆勒屈曲现象的解释三种平衡状态三种平衡状态(1 1)稳定平衡:)稳定平衡:偏离平衡位置,总势能增加。偏离平衡位置,总势能增加。(2 2)不稳定平衡:)不稳定平衡:偏离平衡位置,总势能减少。偏离平衡位置,总势能减少。(3 3)随遇平衡:)随遇平衡:偏离平衡位置,总势能不变。偏离平衡位置,
9、总势能不变。图图1 1图图2 2图图3 3当外力为保守力系时当外力为保守力系时当体系偏离平衡位置,发生微小移动时当体系偏离平衡位置,发生微小移动时 (1)分支点失稳 理想的轴心受压构件 理想的四边支承薄板 受压圆柱壳 (2)极值点失稳 偏心受压构件 (3)跃越失稳 扁壳和坦拱构件失稳的类型vv理想的轴心受压构件理想的轴心受压构件 特点:平衡分枝失稳。当压力未超过一定限值时构件保持平直,只产生压缩变形,有外界干扰时,也能很快恢复到原来的平衡位置;但当压力达到限值Pcr时,偶然干扰将使构件突然产生弯曲,形成在弯曲状态下的新的平衡,称为屈曲,亦称第一类失稳。极限荷载:极限承载力等于临界荷载Pcr(或
10、屈曲荷载)屈曲后强度不能利用屈曲后强度不能利用vv理想的四边支承薄板理想的四边支承薄板 特点:在中面内的边缘均匀压力作用下,板在最初阶段保持平直。当压力达到某一限值Pcr时,薄板突然产生凸曲(屈曲),由于屈曲后薄板不仅有弯曲,而且还产生了中面的拉伸和压缩(薄膜张力),板内应力发生重分布,荷载向挠度较小的边缘部分转移,形成在弯曲状态下的新的平衡。极限荷载:一般利用屈曲后强度,极限荷载Pmax大于屈曲荷载;极限承载力最终取决于受力最大部分的应力达到屈服强度。vv偏心受压构件偏心受压构件 特点:从一开始起,构件即产生侧移(产生弯曲变形)。随着压力的增加,构件的侧移持续增大,由于弯曲变形逐步增大,跨中
11、截面可能出现部分塑性区,由于塑性变形的产生,使侧移的增大也越来越快,当压力达到最大值Pmax时,荷载必须下降才能维持内外力的平衡,即具有极值点和下降段,称为极值点失稳,亦称第二类失稳。极限荷载:极限承载力小于屈曲荷载Pcr,等于最大荷载Pmax,Pmax 称为失稳极限荷载或压溃荷载。轴心压杆的弹性弯曲屈曲轴心压杆的弹性弯曲屈曲 通常,对于细长柱,在轴向应力超过比例极限之前外荷载就已经达到临界力,构件始终处在弹性工作范围内,属于弹性稳定问题。轴心压杆的弹塑性弯曲屈曲轴心压杆的弹塑性弯曲屈曲 对于中长柱和短柱,在外荷载达到临界力之前,轴向应力将超过材料的比例极限,因此,在确定其屈曲荷载时必须考虑到
12、非弹性性能。轴心压杆的弹性弯曲屈曲轴心压杆的弹性弯曲屈曲 轴心压杆:只受轴向压力作用且压力通过截面形心 的直杆。假定条件:(1)等截面直杆;(2)压力通过截面形心;(3)杆端理想铰接;(4)材料完全弹性;(5)小变形(弯曲曲率 )。欧欧拉拉(EulerEuler)早早在在17441744年年通通过过对对理理想想轴轴心心压压杆杆的的整整体体稳稳定定问问题题进进行行的的研研究究,当当轴轴心心力力达达到到临临界界值值时时,压压杆杆处处于于屈屈曲曲的的微微弯弯状状态态。在在弹弹性性微微弯弯状状态态下下,根根据据外外力力矩矩平平衡衡条条件件,可可建建立立平平衡衡微微分分方方程程,求解后得到了著名的求解后
13、得到了著名的欧拉临界力欧拉临界力和和欧拉临界应力欧拉临界应力。考虑一理想轴压杆,按 随遇平衡法计算构件的分枝 屈曲荷载时取图示脱离体并 建立平衡微分方程。杆件处于临界状态时,内外 弯矩相等,即 令 得 上式为常系数线形二阶齐次微分方程,其通解为:A、B为代定常数,由边界条件确定。边界条件 得 由 得 即 (n=1、2、3),即 当n=1时P最小,即为临界力 上述临界力称为欧拉临界力。欧拉临界应力:为长细比 因假定E为常量,所以 cr fp,或 p=p仅与材料有关。小结v欧拉临界力只适用于材料为弹性时的情况,应力一旦超过材料的比例极限,则欧拉公式不再适用。v理想轴心受压构件弯曲屈曲临界力随抗弯刚
14、度的增加和构件长理想轴心受压构件弯曲屈曲临界力随抗弯刚度的增加和构件长度的减小而增大;度的减小而增大;v当构件两端为其它支承情况时,通过杆件计算长度的方法考虑。当构件两端为其它支承情况时,通过杆件计算长度的方法考虑。轴心压杆的弹塑性弯曲屈曲轴心压杆的弹塑性弯曲屈曲(1 1)细长柱)细长柱 屈曲荷载Pcr下的轴向应力小于比例极限fp,弹性分析的结果是正确的。(2 2)中长柱和短柱)中长柱和短柱 屈曲荷 载Pcr下的轴向应力超过比例极 限fp,弹性分析不适用,需考 虑非弹性性能。常用的非弹性屈曲理论:切线模量理论、双模量理论、Shanley理论 cr cr=fp短柱短柱细长柱细长柱切线模量理论切线
15、模量理论 假定:当荷载达到Pt构件产生微弯时,其值还略有 增加。增加的平均轴向应力恰好可以抵消截面边缘 由弯曲引起的拉应力,整个截面都处于加载过程中,因此,切线模量Et通用于全截面。临界力及临界应力:实际的构件本身存在不同的初始缺陷,包括力学缺陷和几何缺陷。(1 1)力学缺陷 截面各部分屈服点不一致 残余应力(钢结构)(2 2)几何缺陷 初弯曲 初偏心主要影响因素主要影响因素初始缺陷对压杆稳定的影响vv初弯曲的影响初弯曲的影响 假设初弯曲形状为正弦半波,跨中最大初挠度为v0,即:内弯矩:外弯矩:对两端铰接柱,当挠曲线为 正弦半波时能满足边界条件,即 必有:v1 跨中挠度增量 由内外弯矩相等得:
16、即 为欧拉临界力,用PE表示,得 则 总挠度 称 1/(1 P/PE)为挠度放大系数。讨论讨论 (1)v与v0成正比,与P是非线形 关系,当P=0时,v=v00;(2)当PPE时,v,即以欧 拉临界力为渐进线,最大挠度与 v0无关;(3)上式仅在凹侧应力max fy 时有效,极限条件是 称边缘纤维屈服准则屈服准则。理想无限弹性体的压力挠度曲线如图实线所示。实际压杆并非无限弹性体,当N达到某值时,在N和Nv的共同作用下,截面边缘开始屈服,进入弹塑性阶段,其压力挠度曲线如虚线所示。vv初偏心的影响初偏心的影响 图示杆件两端荷载存在初偏心距e0,杆件在弹性阶段工作,其内、外弯矩的平衡方程为:上式的通
17、解为 由边界条件 y(0)=0 和 y(l)=0 得到 B=e0 和 即 跨中挠度 化简后得 讨论 (1)v0是P的非线形函数,当P=0时,v0=0,但一开始加载杆件即发生弯曲。(2)v0在加载初期增长较慢,后随P的加大而增长加快,当PPE时,v,以欧拉临界力为渐进线。(3)偏心较大时临界力明 显低于欧拉临界力,若偏心很小,则v0在PPE前都很小。(4)曲线的特点与初弯曲压杆相同,只不过曲线过圆点,可以认为初偏心与初弯曲的影响类似,但其影响程度不同,初偏心的影响随杆长的增大而减小,初弯曲对中等长细比杆件影响较大。力与刚度强度强度(Strength):构件承受载荷作用而不发生塑性变形或构件承受载
18、荷作用而不发生塑性变形或断裂的能力。(抵御破坏的能力)断裂的能力。(抵御破坏的能力)刚度刚度(Stiffness):构件承受载荷作用而不发生过大弹性变构件承受载荷作用而不发生过大弹性变形的能力。(抵抗变形的能力)形的能力。(抵抗变形的能力)根据物理学的定义,根据物理学的定义,刚度刚度是产生是产生单位变形单位变形所需要的所需要的力力拔河拔河绳子的强度公式 的物理意义显而易见,当P=PE时,v将无限增大。它的物理意义就是指杆件的弯曲刚度随着P的增加不断退化,在P=PE退化为零了。这时分析稳定问题时一个重要的概念,这个概念不仅适用于单根压杆,也适用于诸如框架等体系。偏心距增大系数偏心距增大系数二阶弯
19、矩二阶弯矩偏心受压构件在荷载作用下,由偏心受压构件在荷载作用下,由于侧向挠曲变形,引起附加弯矩于侧向挠曲变形,引起附加弯矩Nf,也称,也称二阶效应二阶效应,即跨中截面,即跨中截面的弯矩为的弯矩为M=N(ei+f)。对于短柱,对于短柱,l0/h8,Nf较小,较小,可忽略不计,可忽略不计,M与与N为直线关系,为直线关系,构件是由于材料强度不足而破坏,构件是由于材料强度不足而破坏,属于材料破坏。属于材料破坏。对于长柱,对于长柱,l0/h=830,二阶效二阶效应引起附加弯矩在计算中不能忽应引起附加弯矩在计算中不能忽略,略,M与与N 不是直线关系,承载不是直线关系,承载力比相同截面的短柱力比相同截面的短
20、柱 要小,但破要小,但破坏仍为材料破坏。坏仍为材料破坏。对于长细柱,构件将发生失稳对于长细柱,构件将发生失稳破坏。破坏。纵向弯曲引起的二阶弯矩纵向弯曲引起的二阶弯矩Nfei二次弯矩考虑弯矩引起的横向挠度的影响l0/h越大f的影响就越大增大了偏心作用Nfei设则x=l0/2处的曲率为tcsh0根据平截面假定Nfeitcsh0若fcu50Mpa,则发生界限破坏时截面的曲率长期荷载下的徐变使混凝土的应变增大Nfeitcsh0实际情况并一定发生界限破坏。另外,柱的长细比对又有影响Nfeitcsh0Nfeitcsh0考虑偏心距变化的修正系数若11.0,取 1=1.0考虑长细比的修正系数若21.0,取 2=1.0