《初中数学人教九下第二十七章卷3.docx》由会员分享,可在线阅读,更多相关《初中数学人教九下第二十七章卷3.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、单元测试卷一选择题1若a:b=2:3,则下列各式中正确的式子是()A2a=3bB3a=2bCD2若x:y=1:3,2y=3z,则的值是()A5BCD53如图,在ABC中,DEBC,若=,则=()ABCD4如图,直线l1l2l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,ACB=90,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()ABCD5若两个相似多边形的面积之比为1:4,则它们的周长之比为()A1:4B1:2C2:1D4:16)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ABE向上折叠,使B点落在AD上的F点,若四边形EF
2、DC与矩形ABCD相似,则AD=()ABCD27如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与AEF相似的三角形有()A0个B1个C2个D3个8如图,点P在ABC的边AC上,要判断ABPACB,添加一个条件,不正确的是()AABP=CBAPB=ABCC=D=9如图,在ABC中,BF平分ABC,AFBF于点F,D为AB的中点,连接DF延长交AC于点E若AB=10,BC=16,则线段EF的长为()A2B3C4D510ABC与DEF的相似比为1:4,则ABC与DEF的周长比为()A1:2B1:3C1:4D1:1611如图是由边长相同的小正方形组成的
3、网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中QMB的正切值是()AB1CD212如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A(2,1)B(2,0)C(3,3)D(3,1)二填空题13如果=k(b+d+f0),且a+c+e=3(b+d+f),那么k= 14如图,ABCDEF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于 15如图,在ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件 ,使ABCACD(只填一个即可)16已知矩形A
4、BCD中,AB=1,在BC上取一点E,将ABE沿AE向上折叠,使B点落在AD上的F点若四边形EFDC与矩形ABCD相似,则AD= 三解答题17如图,在ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD(1)通过计算,判断AD2与ACCD的大小关系;(2)求ABD的度数18如图,在ABC中,AB=AC,A=36,BD为角平分线,DEAB,垂足为E(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明19如图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)
5、直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当BOD与BCE相似时,求点E的坐标20如图,在ABC中,AD平分BAC交BC于点D点E、F分别在边AB、AC上,且BE=AF,FGAB交线段AD于点G,连接BG、EF(1)求证:四边形BGFE是平行四边形;(2)若ABGAGF,AB=10,AG=6,求线段BE的长21如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20
6、米,求旗杆的高度22如图,是一个照相机成像的示意图(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?答案解析一选择题1若a:b=2:3,则下列各式中正确的式子是()A2a=3bB3a=2bCD【考点】比例的性质 【分析】根据比例的性质,对选项一一分析,选择正确答案【解答】解:A、2a=3ba:b=3:2,故选项错误;B、3a=2ba:b=2:3,故选项正确;C、=b:a=2:3,故选项错误;D、=a:b=4:3,故选项错误故选B【点评】考查了比例的性质在
7、比例里,两个外项的乘积等于两个内项的乘积2若x:y=1:3,2y=3z,则的值是()A5BCD5【考点】比例的性质 【专题】计算题【分析】根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解【解答】解:x:y=1:3,设x=k,y=3k,2y=3z,z=2k,=5故选:A【点评】本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便3如图,在ABC中,DEBC,若=,则=()ABCD【考点】平行线分线段成比例 【分析】直接利用平行线分线段成比例定理写出答案即可【解答】解:DEBC,=,故选C【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答
8、本题的关键,属于基础定义或定理,难度不大4(2016淄博)如图,直线l1l2l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,ACB=90,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()ABCD【考点】平行线分线段成比例 【专题】线段、角、相交线与平行线【分析】先作出作BFl3,AEl3,再判断ACECBF,求出CE=BF=3,CF=AE=4,然后由l2l3,求出DG,即可【解答】解:如图,作BFl3,AEl3,ACB=90,BCF+ACE=90,BCF+CFB=90,ACE=CBF,在ACE和CBF中,ACECBF,CE=BF=3,CF
9、=AE=4,l1与l2的距离为1,l2与l3的距离为3,AG=1,BG=EF=CF+CE=7AB=5,l2l3,=DG=CE=,BD=BGDG=7=,=故选A【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形5若两个相似多边形的面积之比为1:4,则它们的周长之比为()A1:4B1:2C2:1D4:1【考点】相似多边形的性质 【分析】根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解【解答】解:两个相似多边形面积比为1:4,周长之比为=1:2故选:B【点评】本题考查相似多边形的性质相似多边形对
10、应边之比、周长之比等于相似比,而面积之比等于相似比的平方6已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()ABCD2【考点】相似多边形的性质 【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可【解答】解:沿AE将ABE向上折叠,使B点落在AD上的F点,四边形ABEF是正方形,AB=1,设AD=x,则FD=x1,FE=1,四边形EFDC与矩形ABCD相似,=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解故选B【点评】考查了翻折变换(折叠问题),相似多边形的
11、性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式7如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与AEF相似的三角形有()A0个B1个C2个D3个【考点】相似三角形的判定 【分析】直接利用平行四边形的性质得出ADBC,ABDC,再结合相似三角形的判定方法得出答案【解答】解:四边形ABCD是平行四边形,ADBC,ABDC,AEFCBF,AEFDEC,与AEF相似的三角形有2个故选:C【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,正确掌握相似三角形的判定方法是解题关键8如图,点P在ABC的边AC上,要判断ABPACB,
12、添加一个条件,不正确的是()AABP=CBAPB=ABCC=D=【考点】相似三角形的判定 【分析】分别利用相似三角形的判定方法判断得出即可【解答】解:A、当ABP=C时,又A=A,ABPACB,故此选项错误;B、当APB=ABC时,又A=A,ABPACB,故此选项错误;C、当=时,又A=A,ABPACB,故此选项错误;D、无法得到ABPACB,故此选项正确故选:D【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键9如图,在ABC中,BF平分ABC,AFBF于点F,D为AB的中点,连接DF延长交AC于点E若AB=10,BC=16,则线段EF的长为()A2B3C4D5【考点】相似三
13、角形的判定与性质 【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且ABF=BFD,结合角平分线可得CBF=DFB,即DEBC,进而可得DE=8,由EF=DEDF可得答案【解答】解:AFBF,AFB=90,AB=10,D为AB中点,DF=AB=AD=BD=5,ABF=BFD,又BF平分ABC,ABF=CBF,CBF=DFB,DEBC,ADEABC,=,即,解得:DE=8,EF=DEDF=3,故选:B【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键10ABC与DEF的相似比为1:4,则ABC与DEF的周长比为()A1:2B1
14、:3C1:4D1:16【考点】相似三角形的性质 【分析】由相似三角形周长的比等于相似比即可得出结果【解答】解:ABC与DEF的相似比为1:4,ABC与DEF的周长比为1:4;故选:C【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键11如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中QMB的正切值是()AB1CD2【考点】相似三角形的性质 【专题】网格型【分析】根据题意平移AB使A点与P点重合,进而得出,QPB是直角三角形,再利用tanQMB=tanP=,进而求出答案【解答】解:如图所示:平移AB
15、使A点与P点重合,连接BQ,可得QMB=P,PB=2,PQ=2,BQ=4,PB2+PB2=BQ2,QPB是直角三角形,tanQMB=tanP=2故选:D【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出QPB是直角三角形是解题关键12如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A(2,1)B(2,0)C(3,3)D(3,1)【考点】平面直角坐标系中的位似变换 【分析】根据位似变换的性质可知,ODCOBA,相似比是,根据已知数据可以求出点C的坐标【解答】解:由题意得,ODCOBA,相似比
16、是,=,又OB=6,AB=3,OD=2,CD=1,点C的坐标为:(2,1),故选:A【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用二填空题13如果=k(b+d+f0),且a+c+e=3(b+d+f),那么k=3【考点】比例的性质 【分析】根据等比性质,可得答案【解答】解:由等比性质,得k=3,故答案为:3【点评】本题考查了比例的性质,利用了等比性质:=kk=14(2016济宁)如图,ABCDEF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于【考点】平行线分线段成比例 【分析】首先求出AD的长度,然后根据平行线分线段成比例
17、定理,列出比例式即可得到结论【解答】解:AG=2,GD=1,AD=3,ABCDEF,=,故答案为:【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算15如图,在ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件ACD=ABC(答案不唯一),使ABCACD(只填一个即可)【考点】相似三角形的判定 【专题】开放型【分析】相似三角形的判定有三种方法:三边法:三组对应边的比相等的两个三角形相似;两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;两角法:有两组角对应相等的两个三角形相似由此可得出可添加的条件【
18、解答】解:由题意得,A=A(公共角),则可添加:ACD=ABC,利用两角法可判定ABCACD故答案可为:ACD=ABC【点评】本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一16已知矩形ABCD中,AB=1,在BC上取一点E,将ABE沿AE向上折叠,使B点落在AD上的F点若四边形EFDC与矩形ABCD相似,则AD=【考点】相似多边形的性质 【专题】压轴题【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可【解答】解:AB=1,设AD=x,则FD=x1,FE=1,四边形EFDC与矩形ABCD相似,=
19、,=,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解故答案为【点评】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式三解答题(共52分)17(2016福州)如图,在ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD(1)通过计算,判断AD2与ACCD的大小关系;(2)求ABD的度数【考点】相似三角形的判定 【分析】(1)先求得AD、CD的长,然后再计算出AD2与ACCD的值,从而可得到AD2与ACCD的关系;(2)由(1)可得到BD2=ACCD,然后依据对应边成比例且夹角相等的两三角形相似证明BCDAB
20、C,依据相似三角形的性质可知DBC=A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得ABD的度数【解答】解:(1)AD=BC,BC=,AD=,DC=1=AD2=,ACCD=1=AD2=ACCD(2)AD=BC,AD2=ACCD,BC2=ACCD,即又C=C,BCDACB,DBC=ADB=CB=ADA=ABD,C=BDC设A=x,则ABD=x,DBC=x,C=2xA+ABC+C=180,x+2x+2x=180解得:x=36ABD=36【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得BCDABC是解题的关键18如图,在ABC中,AB=
21、AC,A=36,BD为角平分线,DEAB,垂足为E(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明【考点】相似三角形的判定 【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可【解答】解:(1)ADEBDE,ABCBCD;(2)证明:AB=AC,A=36,ABC=C=72,BD为角平分线,ABD=ABC=36=A,在ADE和BDE中,ADEBDE(AAS);证明:AB=AC,A=36,ABC=C=72,BD为角平分线,DBC=ABC=36=A,C=C,ABCBCD【
22、点评】此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键19(2016广州)如图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当BOD与BCE相似时,求点E的坐标【考点】相似三角形的性质 【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得
23、到或,代入数据即可得到结论【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:故直线AD的解析式为:y=x+1;(2)直线AD与x轴的交点为(2,0),OB=2,点D的坐标为(0,1),OD=1,y=x+3与x轴交于点C(3,0),OC=3,BC=5BOD与BEC相似,或,=或,BE=2,CE=,或CE=,BCEF=BECE,EF=2,CF=1,E(2,2),或(3,)【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键20如图,在ABC中,AD平分BAC交BC于点D点E、F分别在边AB、AC上,且BE=AF,FGAB
24、交线段AD于点G,连接BG、EF(1)求证:四边形BGFE是平行四边形;(2)若ABGAGF,AB=10,AG=6,求线段BE的长【考点】相似三角形的性质 【专题】综合题【分析】(1)根据FGAB,又AD平分BAC,可证得,AGF=GAF,从而得:AF=FG=BE,又因为FGAB,所以可知四边形BGFE是平行四边形;(2)根据ABGAGF,可得,求出AF的长,再由(1)的结论:AF=FG=BE,即可得BE的长【解答】(1)证明:FGAB,BAD=AGFBAD=GAF,AGF=GAF,AF=GFBE=AF,FG=BE,又FGBE,四边形BGFE为平行四边形(4分)(2)解:ABGAGF,即,AF
25、=3.6,BE=AF,BE=3.6 【点评】解决此类题目,要掌握平行四边形的判定及相似三角形的性质21如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度【考点】利用标杆测量物体的高度 【分析】根据题意可得:DEFDCA,进而利用相似三角形的性质得出AC的长,即可得出答案【解答】解:由题意可得:DEFDCA,则=,DE=0.5米,EF=0.25米,DG=1.5m,DC=
26、20m,=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m【点评】此题主要考查了相似三角形的应用,得出DEFDCA是解题关键22如图,是一个照相机成像的示意图(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?【考点】利用镜子测量物体的高度 【分析】(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可【解答】解:根据物体成像原理知:LMNLBA,(1)像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,解得:LD=7,拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,解得:LC=70,相机的焦距应调整为70mm【点评】本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比