《鲁教版初二数学上册教案.pdf》由会员分享,可在线阅读,更多相关《鲁教版初二数学上册教案.pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、鲁教版初二数学上册教案鲁教版初二数学上册教案鲁教版初二数学上册教案鲁教版初二数学上册教案 1 1教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I 提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B 点)为 B 标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60方向走一段距离到C处时,测得ACB 为 30,这时,地质专家
2、测得 AC 的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II 引入新课1.由性质定理的题设和结论的变化,引出研究的内容在ABC 中,苦B=C,则 AB=AC 吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III 例题与练习1.如图 2其
3、中ABC 是等腰三角形的是 2.如图 3,已知ABC 中,AB=AC.A=36,则C_(根据什么?).如图 4,已知ABC 中,A=36,C=72,ABC 是_三角形(根据什么?).若已知A=36,C=72,BD 平分ABC 交 AC 于 D,判断图 5 中等腰三角形有_.若已知 AD=4cm,则 BC_cm.3.以问题形式引出推论 l_.4.以问题形式引出推论 2_.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图 6,在ABC 中,AB=AC,ABC、ACB 的平分线相交于点 F,
4、过 F 作 DE/BC,交 AB 于点 D,交 AC 于 E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件 AB=AC,其他条件不变,图 6 中还有等腰三角形吗?练习:P53 练习 1、2、3。IV 课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V 布置作业:P56 页习题 12.3 第 5、6 题鲁教版初二数学上册教案鲁教版初二数学上册教案 2 2教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历
5、探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例 5】小芳以 200 米/分的速度起跑后,先匀加速跑 5 分,每分提高速度 20 米/分,又匀速跑 10 分,试写出这段时间里她的跑步速度 y(单位:米/分)随跑步时间 x(单位:分)变化的函数关系式,并画出函数图象.y=【例 6】A 城有肥料 200 吨,
6、B 城有肥料 300 吨,现要把这些肥料全部运往 C、D 两乡.从 A 城往 C、D 两乡运肥料的费用分别为每吨 20 元和 25 元;从 B 城往 C、D两乡运肥料的费用分别为每吨 15 元和 24 元,现 C 乡需要肥料 240 吨,D 乡需要肥料 260吨,怎样调运总运费最少?解:设总运费为 y 元,A 城往运 C 乡的肥料量为 x 吨,则运往 D 乡的肥料量为(200-x)吨.B 城运往 C、D 乡的肥料量分别为(240-x)吨与(60+x)吨.y 与 x 的关系式为:y=20 x+25(200-x)+15(240-x)+24(60+x),即 y=4x+10040(0 x200).由图
7、象可看出:当 x=0 时,y 有最小值 10040,因此,从 A城运往 C 乡 0 吨,运往 D乡 200 吨;从 B 城运往 C 乡 240 吨,运往 D 乡 60 吨,此时总运费最少,总运费最小值为 10040 元.拓展:若 A 城有肥料 300 吨,B 城有肥料 200 吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本 P119 练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本 P120 习题 14.2 第 9,10,11 题.板书设计14.2.2 一次函数(4)1、一次函数的应用例:鲁教版初二数学上册教案鲁教版初二数学上册教案 3 3教学目标
8、1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称
9、图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形等腰三角形.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线 L,在 L 上取点 A,在 L 外取点 B,作出点 B 关于直线 L 的对称点 C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关
10、系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两
11、个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在ABC 中,AB=AC,作底边 BC 的中线 AD,因为所以BADCAD(SSS).所以B=C.如右图,在ABC 中,AB=AC,作顶角BAC 的角平分线 AD,因为所以BADCAD.所以 BD=CD,BDA=CDA=BDC=90.例 1如图,在ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=A
12、D,求:ABC 各角的度数.分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A.再由三角形内角和为 180,就可求出ABC 的三个内角.把A 设为 x 的话,那么ABC、C 都可以用 x 来表示,这样过程就更简捷.解:因为 AB=AC,BD=BC=AD,所以ABC=C=BDC.A=ABD(等边对等角).设A=x,则 BDC=A+ABD=2x,从而ABC=C=BDC=2x.于是在ABC 中,有A+ABC+C=x+2x+2x=180,解得 x=36.在ABC 中,A=35,ABC=C=72.师下面我们通过练习来巩固这节课
13、所学的知识.随堂练习:1.课本 P51 练习 1、2、3.2.阅读课本 P49P51,然后小结.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.作业:课本 P56 习题 12.3 第 1、2、3、4 题.板书设计12.3.1.1 等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角 2.三线合一鲁教版初二数学上册教案鲁教版初二数学上册教
14、案 4 4教材分析1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。学情分析1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它
15、函数的基础。3、学生认知障碍点:根据问题信息写出一次函数的表达式。教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。教学重点和难点1、一次函数、正比例函数的概念及关系。2、会根据已知信息写出一次函数的表达式。鲁教版初二数学上册教案鲁教版初二数学上册教案 5 5一、教学目标1.了解二次根式的意义;2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3.掌握二次
16、根式的性质 和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5.通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子 叫做二次根式.对于 请同学们讨论论应注意的问题,引导学生总结:(1)式子 只有在条件 a0 时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根
17、式的一部分.(2)是二次根式,而,提问学生:2 是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例 1 当 a 为实数时,下列各式中哪些是二次根式?例 2 x 是怎样的实数时,式子 在实数范围有意义?解:略.说明:这个问题实质上是在 x 是什么数时,x-3 是非负数,式子 有意义.例 3 当字母取何值时,下列各式为二次根式:(1)(2)(3)(4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)a、b 为任意实数时,都有 a2+b20,当 a、b为任
18、意实数时,是二次根式.(2)-3x0,x0,即 x0 时,是二次根式.(3),且 x0,x0,当 x0 时,是二次根式.(4),即,故 x-20 且 x-20,x2.当 x2 时,是二次根式.例 4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a0 时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由 2a+30,得.(2)由,得 3a-10,解得.(3)由于 x 取任何实数时都有|x|0,因此,|x|+0.10,于是,式子 是二次根式.所以所求字母 x 的取值范围是全体实数.(4)由-b20 得 b20,只有当 b=0 时,才有 b2=0,因此,字母 b 所满足的条件是:b=0.