全等三角形复习课件自制.ppt

上传人:wuy****n92 文档编号:90719053 上传时间:2023-05-17 格式:PPT 页数:24 大小:274.50KB
返回 下载 相关 举报
全等三角形复习课件自制.ppt_第1页
第1页 / 共24页
全等三角形复习课件自制.ppt_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《全等三角形复习课件自制.ppt》由会员分享,可在线阅读,更多相关《全等三角形复习课件自制.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、(一)(一)xxx学习目标学习目标复习巩固全等三角形的判定与性质,并能复习巩固全等三角形的判定与性质,并能应用于解决问题。应用于解决问题。自学指导自学指导一、梳理本章知识(一、梳理本章知识(3分钟)。分钟)。(一一)、全等三角形的概念及其性质全等三角形的定义:全等三角形的定义:能够完全重合的两个三角形叫做全等三角形全等三角形,重合的点叫做对应顶点对应顶点,重合的边叫做对应边对应边,重合的角叫做对应角对应角。全等三角形性质:全等三角形性质:(1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等注意:“全等”的记法“”,全等变换:平移、旋转、翻转。(二二)、一般三角形一般三角形 全等的条

2、件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HLHL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法有公共边的,公共边是对应边有公共边的,公共边是对应边.有公共角的,公共角是对应角有公共角的,公共角是对应角.有对顶角的,对顶角是对应角有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最长的边是对应边,一对最短的边是对应边一对最短的边是对应边.一对最大的角是对应角,一对最大的

3、角是对应角,一对最小的角是对应角一对最小的角是对应角.(三)在找全等三角形的对应元素时一(三)在找全等三角形的对应元素时一般有什么般有什么规律规律?角的内部到角的两边的距离相等的点角的内部到角的两边的距离相等的点在角的平分线上。在角的平分线上。用法:用法:用法:用法:QDOA,QEOB,QDQE点Q在AOB的平分线上角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等.用法:用法:用法:用法:QDOA,QEOB,点Q在AOB的平分线上 QDQE(四)角的平分线:(四)角的平分线:1.角平分线的性质:角平分线的性质:2.角平分线的判定:角平分线的判定:例1、已知如图(1),A

4、BC DCB,对应边:_与_,_与_,_与_,对应角:_与_,_与_,_与_.典型例题典型例题例例2 2、图中、图中 ABD CDB,ABD CDB,则则AB=AB=;AD=AD=;BD=BD=;ABD=_ABD=_ ;ADB=_ ADB=_ ;A=_ A=_ ;CDCBBDCDBCBDC例例3、如图、如图ABD EBC,AB=3cm,BC=5cm,求求DE的长的长解:解:ABD EBCAB=EB、BD=BCBD=DE+EBDE=BD-EB =BC-AB =5-3=2cm例例4 4、如图:在、如图:在ABCABC中,中,C=90C=900 0,ADAD平分平分 BAC BAC,DEABDEAB

5、交交ABAB于于E E,BC=30BC=30,BDBD:CD=3CD=3:2 2,则,则DE=DE=。12cABDE强化练习强化练习练习练习1:如图,:如图,AB=AD,CB=CD.求证求证:AC 平分平分BADADCB证明:在证明:在ABC和和ADC中中 AC=AC AB=AD CB=CD ABCADC (SSS)BAC=DAC AC平分平分BAD2、如图,、如图,D在在AB上,上,E在在AC上,上,AB=AC,B=C,试问试问AD=AE吗?为什么?吗?为什么?EDCBA解解:AD=AE理由:理由:在在ACD和和ABE中中 B=C AB=AC A=A ACDABE (ASA)AD=AE3、如

6、图,、如图,OBAB,OCAC,垂足为垂足为B,C,OB=OCAO平分平分BAC吗?为什么?吗?为什么?OCBA答:答:AO平分平分BAC理由:理由:OBAB,OCAC B=C=90 在在RtABO和和RtACO中中 OB=OC AO=AO RtABO RtACO (HL)BAO=CAO AO平分平分BAC 4、如图,、如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DCAB证明:在证明:在ABO和和CDO中中 OA=OC AOB=COD OB=OD ABOCDO(SAS)A=C DCABAODBC练习练习5:如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三

7、角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?那块去合适?为什么?BAFEDCBA6、如图,已知、如图,已知ACEF,DEBA,若使若使ABCEDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFBC=DFDC=BF1.如图如图1:ABF CDE,B=30,BAE=DCF=20.求求EFC的的度数度数.自我检测自我检测2、如图、如图2,已知:,已知:AD平分平分BAC,AB=AC,连接,连接B

8、D,CD,并延长相,并延长相交交AC、AB于于F、E点则图形中有点则图形中有()对全等三角形)对全等三角形.A、2B、3C4D、5C图图1图图2(500)3、如图、如图3,已知:,已知:ABC中,中,DF=FE,BD=CE,AFBC于于F,则此图中全等三角形共有(,则此图中全等三角形共有()A、5对对B、4对对C、3对对D2对对4、如图、如图4,已知:在,已知:在ABC中,中,AD是是BC边上的高,边上的高,AD=BD,DE=DC,延长,延长BE交交AC于于F,求证:求证:BF是是ABC中边上的高中边上的高.提示:提示:关键证明关键证明ADCBDEB5、如图、如图5,已知:,已知:AB=CD,

9、AD=CB,O为为AC任一点,过任一点,过O作直线作直线分别交分别交AB、CD的延长线于的延长线于F、E,求,求证:证:E=F.提示:提示:由条件易证由条件易证ABCCDA从而得知从而得知BACDCA,即:,即:ABCD.课堂小结1 1:什么是全等三角形?一个三角形经过:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?哪些变化可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?3 3:三角形全等的判定方法有哪些?:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到一

10、个三角形经过平移、翻折、旋转可以得到它的全等形。它的全等形。(1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、):全等三角形的对应边上的对应中线、角平分线、高线分别相等。高线分别相等。SSS、SAS、ASA、AAS、HL(RT)总结提高总结提高学习全等三角形应注意以下几个问题:(1):1):要正确区分要正确区分“对应边对应边”与与“对边对边”,“对应对应角角”与与 “对角对角”的不同含义;的不同含义;(2 2):表示两个三角形全等时,表示对应顶点的字):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;母要写在对应的位置上;(3 3):要记住):要记住“有三个角对应相等有三个角对应相等”或或“有两边及有两边及其中一边的对角对应相等其中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4):时刻注意图形中的隐含条件,如):时刻注意图形中的隐含条件,如“公共角公共角”、“公共边公共边”、“对顶角对顶角”作业作业复习题复习题11必做必做8、9选作选作11、12

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁