《遥感实习报告(共8篇).docx》由会员分享,可在线阅读,更多相关《遥感实习报告(共8篇).docx(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、遥感实习报告(共8篇)篇:遥感实习报告遥感图像处理实习报告姓名:学号:班级:老师:实验:土地覆被变化分析阅读该实验的教材内容,回答以下问题:1.遥感数字图像处理在哪三种空间上进行?各空间的内涵是什么?答:(1)图像空间:图像具有二维坐标,是数字的直观表达,地物在图像空间中能直观的表示出来。利用图像合成可以产生不同的表示方式,便于进行视觉对比。(2)光谱空间:光谱是区分、识别地物的基本依据,不同的地物具有不同的光谱。在光谱空间,可以分析当前像素的光谱,也可以对不同像素、不同地物的光谱进行对比。(3)特征空间:在特征空间中,同类的像素点往往聚在一起,不同的特征空间表达了像素间的不同关系;利用特征空
2、间可以进行遥感信息的有效提取、遥感图像分类和模式识别。实验报告内容:一、实验过程1.相对几何较正;用ENVI5.3打开1992年和2000年的遥感图像,在工具栏MAP中选择Registration,并选择图像校正图片对图片形式的。以2000年为基图,1992年为校正图进行校正并保存。校正点尽可能达到30个点左右为佳,由于时间关系,我所处理的图像只有10个校正点。控制点的选取原则:易分辨、易定位的特征点:道路的交叉口,水库坝址,河流弯曲点等。特征变化大的地区应多选些。尽可能满幅均匀选取。几何校正的方法可分为两种:多项式校正法和共线方程校正法。而我此次选择多项式法进行图像校正2.取相同子区;关闭原
3、图,打开我们校正之后的图像,在基础工具栏中选择BasicTools的一个选项(调整数据大小),处理得出的数据大小应该是2060*1060像素的。处理完1992年的数据,我们可以直接用处理后1992年数据大小对2000年图像进行处理,以保证两组数据尺寸大小相同。3.分类;分类的原理:同类地物在相同的条件下,具有相同或相似的光谱信息特征和空间信息特征,即同类地物像元的特征向量将集群在同一特征空间区域;而不同2的地物其光谱信息特征或空间信息特征将不同,集群在不同的特征空间区域。因此根据光谱亮度值的集群我们可以将不同的像元归到不同的类别中去。首先我们需要利用ROI训练我们的感兴趣区,我将1992年图像
4、分为6类分别为河流、湖泊、高植被、低植被、荒漠和落地,而2000年的图像只有5类,因为我在观察时发现2000年的图像没有荒漠区域,即没有荒漠部分。随后我们用监督分类中的最大似然法对图像进行分类。选择依据:最大似然法(Bayes分类器)是通过观测样本X把它的先验概率转化为后验概率,并以后验概率最大的原则确定样本X的所属类别。该分类器可以使错误分类的概率最小。特点:(1)最大似然法分类并不把一个对象绝对地指派给某一类,而是通过计算得出属于某一类的概率,具有最大概率的类便是该对象所属的类;(2)一般情况下在最大似然法分类中所有的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是所有的属性都参与
5、分类。4.分类后处理(1)类别合并:在已经分类了的图像中选择性地进行类的结合,将高植被低植被进行合并,河流和湖泊进行合并为水体。(2)编辑颜色:进行颜色处理,更改某些地类的颜色,使得配色美观。(3)纠正错误分类:手动对分类不合理的地方进行编辑,将其加入大类中。5.分类精度分析Kappa系数:kappa系数是在综合了用户精度和制图精度两个参数上提出的一个最终指标。值域正如以上所说-1,1,如果越大,表示图象分类精度越高。Kappa系数=0.97,由此我们可以知道此次分类处理的精度还是比较准确的6.类别统计报告;从类别统计报告上得到无论是1992年还是2000年,裸地占极大的比例达到百分之五十以上
6、,而荒漠在8年时间里消失,植被数量略有增长,水体部分也4有所增加。7.变化探测分析从上图我们可以看到该地区从1992年到2000年之间变化还是挺大的。从整体上看,植被的数量上增加缓慢;水体,即河流和湖泊的数量增加了0.3%左右;而荒漠则是整体性的消失,增长为裸地,带来裸地整体数量的变化。原因:通过查阅文献和询问老师,我们了解到1992年是一个大旱年,整体降水量少,所以植被数量和水的总量比较少。而1992年后,人类开始在该地区进行大量农耕和砍伐,导致植被面积虽然增加,但是增加缓慢,高植被(森林)面积下降,低植被相对增加。8.遥感制图一、准备专题制图数据,二、生成专题制图文件,确定专题制图范围,四
7、、放置图面整饰要素。而图面整饰又包括:1.绘制格网线与坐标注记,2.绘制地图比例尺,3.绘制地图图例,4.绘制指北针,5.地图名称的设定,6.地图的保存。二、分析与讨论1.监督分类的步骤。1)对裁剪好的两幅图像,利用先验知识和图像判读先分别划出感兴趣区。2)在全面分类之前,先利用训练样本来评价感兴趣区的可分离性。若参数在1.92.0之间,则说明分离性较好。3)选择最大似然法进行分类。三、收获与感想在此次实习中,我遇到的主要问题是操作不熟练,经常做到一半忘记接下去的步骤,然后只好重新做,最后再问同学,一遍一遍看着视频做。由于自己的电脑无法安装Envi软件,所以只能到机房或者借同学的电脑来做,确实
8、有些不方便。但同时,在这个过程,也能让自己多做几遍,熟悉软件操作。听课时一定要认真,下课也需要及时的去进行回忆操作,不然没有老师的指导,作业很难完成。需要在课堂上录制老师的讲课过程,反复看。作为土管专业的学生,我们以后也可以从事城市规划等相关事业。而城市规划向来都是遥感技术应用的一大领域。从最基础的正射影像图和各类专题图的制作、城市土地利用的监测评价、违章建筑的督察管理、城市植被覆盖度调查等等,这些都是遥感技术在城市规划管理方面的具体应用。所以学好Envi软件是我们土管学生必不可少的专业技能。第2篇:遥感实习报告遥感原理与应用课堂实验报告(2015-2023学年第一学期)专业班级:学号:姓名:
9、实验成绩:优秀:格式完全符合规范要求,内容完整,图表规范美观;实验原理清楚,实验步骤合理,结果正确;严格遵守实验纪律,按时上交实验报告。良好:格式符合规范要求,内容完整,图表规范;实验原理较清楚,实验步骤合理,结果正确;遵守实验纪律,按时上交实验报告。中等:格式基本符合规范要求,内容较完整;实验原理较清楚,实验步骤基本合理,结果正确;能遵守实验纪律,能按时上交实验报告。及格:格式问题较多,内容基本完整;实验原理较清楚,实验步骤基本合理,结果基本正确;能遵守实验纪律,能按时上交实验报告。不及格:格式问题突出,内容不完整;实验原理不清楚,实验步骤欠合理,结果不正确;有抄袭现象,不遵守实验纪律,未时
10、上交实验报告。指导教师签名:2015年11月5日实验项目(一):遥感图像几何纠正(4学时)实验目的:掌握遥感图像几何纠正的原理方法;熟悉几何纠正中控制点的选择原则和方法;熟练掌握有关遥感图像处理软件的主要功能和操作步骤;针对变形的遥感图像能进行几何纠正。实验器材:1、计算机;2、基准遥感图像、待纠正遥感图像;3、遥感数字图像处理ENVI软件。实验要求:掌握遥感图像几何纠正的主要步骤;自己独立完成遥感图像几何纠正;对几何校正结果进行评价。实习时间及地点:2015年10月15日软件与数据源描述:ENVI提供以下选择方式:从栅格图像上选择如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可
11、以从中选择控制点,对应的控制点选择模式为ImagetoImage。从矢量数据中选择如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为ImagetoMap。从文本文件中导入事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以Map(x,y),Image(x,y)格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为ImagetoImage和ImagetoMap。键盘输入如果只有控制点目标坐标信息或者只能从地图上获取坐标文件(如地形图等),只好通过键盘敲入坐标数据并在影像上找到对应点。控制点的预测是通过控制点回归计算求出多项式系数,然后通
12、过多项式计算预测下一个控制点位置,RMS值也是用同样的方法。默认多项式次数为1,因此在选择第四个点时控制点预测功能可以使用,随着控制点数量的增强,预测精度随之增加。最少控制点数量与多项式次数的关系为(n+1)2.实验原理及步骤:实验步骤:运行ENVI软件第一步:显示图像文件从ENVI主菜单中,选择FileOpenImageFile当EnterDataFilename文件选择对话框出现后,选择进入当前目录下的几何校正子目录,从列表中选择bldr_tm.img和bldr_sp.img文件。在波段列表中bldr_tm.img选择RGB:543显示,同时Display中显示bldr_sp.img。点击
13、OK。出现可用波段列表对话框出现。两影像分别在display#1,display#2中打开。第二步:启动几何校正模块在主菜单上选择map-Registration-selectGCPs:imagetoimage出现窗口ImagetoImageRegistration,分别在两边选中DISPLAY1(左),和DISPLAY2(右)。BASE图像指参考图(bldr_sp.img)像而warp则指待校正影像(bldr_tm.img)。选择OK!第三步:采集地面控制点进行选点:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就可以选择ADDPOINT添加点了。剔除或调整误差较大的点。第四步:选择
14、校正参数输出接下来就是进行校正了:在groundcontrolpoints.对话框中选择:options-warpfile(asimagetomap),在出现的imputwarpimage中选中你要校正的影像tm,点ok进入registrationparameters对话框:首先点changeproj按钮,选择坐标系utm,然后更改象素的大小,输入为30m。最后选择多项式校正方法.重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径。memory点OK。第五步:检验校正结果在显示校正后结果的Image窗口中,右键选择GeographicLink命
15、令,选择需要连接的两个窗口,打开十字光标进行查看。或者在INVIZOOM中将校正后的结果跟基准影像同时显示在窗口中,并用透视或者拉幕工具进行对比浏览。实验结果与分析:1、控制点应选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、湖泊边缘、飞机场、城郭边缘;2、特征变化大地区应该多选控制点;图像边缘部分一定要选取控制点,以避免外推;尽可能满幅均匀选取。3、控制点选取结束后要记得保存控制点文件2015年10月15日实验项目(二):遥感图像的镶嵌与裁剪(0.5学时)实验目的:熟悉遥感图像的特点;掌握遥感图像镶嵌与裁剪的概念和作用;掌握遥感图像镶嵌与裁剪影像处理软件的相关
16、操作步骤。实验器材:1、计算机;2、多光谱遥感图像;3、遥感数字图像处理ENVI软件。实验要求:1、了解多光谱遥感图像的成像规律和特点;2、掌握遥感图像镶嵌与裁剪的概念及主要操作步骤;3、对遇到的问题能自己分析解决。实习时间及地点:2015年10月29日软件与数据描述:图像裁剪的目的是将研究之外的区域去除。常用的方法是按照行政区划边界或者自然区划边界进行头像裁剪;在基础数据生产中个,还经常要进行标准分幅裁剪。本课程学习在ENVI下进行图像的规则裁剪、利用矢量数据进行图像的不规则裁剪。规则裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形范围获取途径包括:行列号、左上角和右下角两点坐标、图像文件、
17、ROI/矢量文件。规则分幅裁剪功能在很多的处理处理过程中都可以启动(SpatialSubset)。下面介绍其中一种规则分幅裁剪过程。不规则图像裁剪,是指裁剪图像的边界范围是一个任意多边形。任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的多边形,也可以是ENVI支持的矢量文件。针对不同的情况采用不同的裁剪过程。下面学习这两种方法。图像镶嵌,指在一定数学基础控制下把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程。ENVI的图像镶嵌功能可提供交互式的方式,将有地理坐标或没有地理坐标的多幅图像合并,生成一幅单一的合成图像。实验原理及步骤:在ENVI主菜单中,选择MapMos
18、aickingPixelBased,开始进行ENVI基于像素的镶嵌操作。PixelBasedMosaic对话框出现在屏幕上。2、从PixelBasedMosaic对话框中,选择ImportImportFiles。在MosaicInputFiles对话框中,点击OpenFile,选择文件ljs-dv06_2.img。3.在MosaicInputFiles对话框中,再一次点击OpenFile,选择ljs-dv06_3.img文件。4.在MosaicInputFiles对话框中,按下键盘上的Shift键,并同时点击ljs-dv06_2.img和ljs-dv06_3.img文件名,选中这两个文件,点击
19、OK。5.在SelectMosaicSize对话框的XSize中输入614,YSize中输入1024,指定镶嵌影像的大小。6.在PixelBasedMosaic对话框中,点击dv06_3.img文件名。7.调整影像的位置关系。8、在PixelBasedMosaic对话框中,选择FileApply。当MosaicParameters对话框出现后,输入输出文件名ljs-dv06.img,点击OK,生成镶嵌影像文件。在PixelBasedMosaic对话框中,选择FileSaveTemplate。当OutputMosaicTemplate对话框出现后,输入输出的文件名ljs-dv06a.mos。9.
20、点击可用波段列表中的dv06a.mos波段名,然后点击LoadBand,显示镶嵌后的影像。10、在PixelBasedMosaic对话框中,选择OptionsChangeMosaicSize。在SelectMosaicSize对话框的XSize和YSize文本框中都输入值768,点击OK,改变输出镶嵌影像的大小。在PixelBasedMosaic对话框中,左键点击影像2的绿色轮廓框。将影像2拖动到镶嵌图的右下角。在镶嵌图中,右键点击影像1的红色轮廓框,选择EditEntry,打开Entry:filename对话框。11、在DataValuetoIgnore文本框中,输入值0。在Featheri
21、ngDistance文本框中,输入值25,点击OK。对另一幅影像,重复上面的两步操作。选择FileSaveTemplate,输入输出文件名ljs-dv06b.mos。在可用波段列表中,点击镶嵌模板文件名,然后点击LoadBand,显示该镶嵌影像。在PixelBasedMosaic对话框中,选择FileApply,点击OK。输入要输出的文件名ljs-dv06-output,设定BackgroundValue为255,然后点击OK。基于地理坐标的影像镶嵌例子在ENVI主菜单中,选择MapMosaickingGeoreferenced,开始进行ENVI基于地理坐标的镶嵌操作。输入文件:从PixelG
22、eoreferencedMosaic对话框中,选择ImportImportFiles。打开ljs-lch_02w.img和ljs-lch_01w.img.在镶嵌图中,右键点击影像1的红色轮廓框,选择EditEntry,打开Entry:filename对话框,在DataValuetoIgnore文本框中,输入值0。在FeatheringDistance文本框中,输入值25,点击OK。同理,处理#2影像。添加注记:在ENVI4.7中FileOpenImageFile选择ljs-lch_01w.img。在主窗口中从主影像窗口中,选择OverlayAnnotation,打开Annotation对话框。
23、在color中选择Red,然后添加注记,操作完成后保存为ljs-lch-a.ann导入注记:在mosica窗口,选择上影像,右键选择EditEntry,选择selectcutlineAnnotationFile,选择ljs-lch-a.ann。结果如下:创建输出羽化后的镶嵌影像在MapBasedMosaic对话框中,选择FileApply。在MosaicParameters对话框中,输入输出文件名ljs-lch_mos.img,点击OK,创建羽化后的镶嵌影像。实验结果与分析:(1)如果待拼接的图形经过了较为准确的几何校正,图像的拼接过程只需要经过色带调整之后就可以运行就可以达到较好的效果。(2
24、)彩色图像如何要取得较好的效果,需要从红绿蓝三个波段进行灰度的调整,对于多个波段的图像文件,进行一一对应的多个波段调整。(3)在使用拼接线拼接时,如果带拼接区域颜色较为一致,或者带拼接区域刚好有河流或其他分割线,可以依照此分割线进行拼接,此时采用拼接线拼接可能取得较好的效果。同时要对拼接线处进行羽化使拼接线能够更好的融入影像中去。2015年10月29日实验项目(三):遥感图像的融合(0.5学时)实验目的:熟悉多光谱遥感图像和高分辨率全色影像的特点;掌握遥感图像融合的基本原理及主要融合算法和步骤;掌握遥感图像融合影像处理软件的主要操作步骤。实验器材:1、计算机;2、多光谱遥感图像和高分辨率的全色
25、影像;3、遥感数字图像处理ENVI软件。实验要求:1、了解多光谱遥感图像和高分辨率全色影像的特点;2、掌握遥感图像融合各种算法的原理与主要操作步骤;3、对遇到的问题能自己分析解决。实习时间及地点:2015年10月29日软件与数据描述:在ENVI中,遥感影像合成总共有5中方法,分别是:HSVColorNormalized(Brovey)Gram-SchmidtSpectralSharpeningPCSpectralSharpeningCNSpectralSharpening实验原理与步骤:1.图像融合:三波段融合:HSV和ColorNormalized(Brovey)变换:1)从ENVI主菜单中
26、,选择FileOpenImageFile,分别加载校正后的资源三号多光谱与全色影像到可用波段列表AvailableBandsList中;2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击LoadRGB将多光谱影像加载到显示窗口display#1;3)在ENVI的主菜单选择TransformImageSharpeningHSV;4)在SelectInputRGBInputBands对话框中,选择Display#1,然后点击OK。5)从HighResolutionInputFile对话框中选择全色影像,点击OK。6)从HSVSharpeningParameters对话框中,选择重
27、采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;与上述方法类似,选择TransformImageSharpeningColorNormalized(Brovey),使用Brovey进行融合变换。多光谱融合:Gram-Schmidt、主成分(PC)和colornormalized(CN)变换三种方法操作过程基本类似,下面以Gram-Schmidt为例:1)从ENVI主菜单中,选择FileOpenImageFile,分别加载校正后的资源三号多光谱与全色影像到可用波段列表AvailableBandsList中;2在ENVI的主菜单选择TransformImageSharpenin
28、gSchmidtSpectralSharpening;3)在SelectLowSpatialResolutionMultiBandInputFile对话框中选择资源三号多光谱影像,在SelectHighSpatialResolutionPanInputBand对话框中选择全色影像,点击OK。4)选择AverageofLowResolutionMultispectralFile方法。5)选择重采样方法,输入输出路径及文件名,单击OK输出。与上述方法类似,选择其他两种方法进行融合,并比较融合结果。2.图像增强:1)从ENVI主菜单中,选择FileOpenImageFile,加载融合后影像到可用波段
29、列表AvailableBandsList中,并打开影像;2)在image主窗口菜单Enhance下有不同的拉伸方法,可以尝试并比较各种方法的特点;3)ENVI系统默认打开的影像已经过2%线性拉伸。如果希望改变系统默认的2%线性扩展,从主菜单FilePreferencesDisplayDefault,将%Linear中的2.0改为0.0,选择OK后,关闭对话框。4)交互式拉伸:主图像菜单中选择EnhanceInteractiveStretching。Strech_Type中可以选择各种扩展方式,主要有Linear(线性)、Gauian(高斯),PiecewiseLinear(分段线性),Equa
30、lization(均衡化),SquareRoot(平方根),Arbitrary(任意拉伸),选中各种不同的扩展方式,点击Apply,即可在图中看到变化后的图像。5)以上增强后结果如果需要保存时,在Image窗口下FileSaveImageasImageFile实验结果与分析:HSV和Brovey变换两种方法在三个波段中,Brovey方法比HSV方法的均值和标准差值都大,在四个波段的其他四种方法,在各个波段中,CN法的均值和标准差值都最大,GS方法与PAN方法均值和标准差值都差不多相等且最小,PC方法的均值比CN方法小比GS方法与PAN方法略大,在1、2、3波段上,CN法的标准差值最大,其余三种
31、大小差不多相等,在4波段上,CN法、GS法、PAN法标准差值大小差不多相等,PC法两种值均最小。定量分析,对比几种方法融合后的图像,可以看出,HSV方法的融合效果最好,图像融合后最为清晰,PC方法的融合效果最差,图像较为模糊。由此通过分析,HSV方法融合效果最佳。2015年10月29日实验项目(四):遥感图像的计算机自动分类(3学时)实验目的:掌握遥感图像分类的基本原理;熟悉遥感图像的特点;掌握ENVI软件遥感图像分类的操作步骤;并输出分类结果专题图;实验器材:1、计算机;2、多光谱遥感图像;3、遥感数字图像处理专用软件。实验要求:1、了解多光谱遥感图像的成像规律和特点;2、掌握遥感图像分类的
32、基本原理及操作步骤;3、对分类结果输出专题图;4、对遇到的问题能自己分析解决。实习时间及地点:2015年10月29日软件与数据描述:实验原理与步骤:实验结果与分析:2015年月日第3篇:遥感实习报告开始作图。3实训体会本次实习总共四天的时间,主要内容是学会使用VirtuoZoNT系统。在这四天的实习过程中,我们学会了很多,掌握了很多以前所不了解的,但是也遇到了很多的问题。在最开始的时候,对实习的内容以及软件都不了解,不知如何下手,而在经过老师的亲自一步一步操作示范给我们看的时,虽然没有完全掌握,但是之后在老师和同学的帮助下,都一步步顺利的完成了。在本个实习中,我不仅学会了VirtuoZoNT系
33、统的使用,在VirtuoZoNT系统中进行模型定向、影像匹配、生成DEM及正射影像的制作、数字影像测图等。分析我自己做的成果,再与老师所做的进行比较发现,我所处理的结果误差明显偏大。究其原因,乃是对立体观测切准地物的各种方法和技巧不熟悉所至。可喜的是,经过数小时的训练,最终的准确度有明显提高。由于经验不足使我在操作上有些盲目既不知道自己操作的对错也不知道打到什么位置最好。在考试的时候我对打高程点还是不清晰,努力让自己沉静下来让自己找到感觉,然后慢慢的开始打点,找到感觉后就开始打点。点的高程慢慢的打对了。实习中多亏了同学们的帮助,老师的指导,加上多次的练习我会了VirtuoZo的大概操作。知道了
34、VirtuoZo的作用。这次实习内容丰富,使我学到了不少东西。它不仅让我认识到了Virtuozo的各种功能和工作流程及部分原理,还让我对数字摄影测量数据获取有了更深刻的了解。同时也使我对数字摄影测量课程有了一个整体的概念。第4篇:遥感实习报告遥感技术及其应用课程设计实验报告专业:资源与环境学院地理信息科学年级:2013级学号:姓名:指导教师:成绩:评语:日期:遥感技术及其应用课程设计实验报告一、土地变化检测2002年与2006年武汉市城区变化检测1.城区目视解译1.1图像校正图1-1-1原始2002年武汉市遥感影像图1-1-2原始2006年武汉市遥感影像操作流程:(1)在ERDASIMAGIN
35、E中打开2002年和2006年的两幅武汉市城区遥感影像,如图;(2)选择DataPrepImageGeometicCorrection,选择待校正图像InputFile为2006年的遥感影像,校正方式GeometricModel选择多项式Polynomial,并设置多项式参数、变换系数、投影类型,其中PolynomialOrder为2,然后依次点击Apply,Close,CollectReferencePointsFrom选择ExistingViewer,点击2002年的遥感影像。利用GCPTool选择至少12对相应的控制点,且保证RMSError均在1以内;(3)完成后保存FileSaveI
36、nputAs,FileSaveReferenceAs,如图;图1-1-32006年图像上控制点位置图1-1-42002年图像上控制点位置图1-1-5控制点属性及分析(3)在GeoCorrectionTools面板中点击displayresampleimagedialogA,在Resample对话框中ResampleMethod为三次卷积CubicConvolution,并将输出文件命名为resample06.在两个Viewer中分别打开2002年的影像和校正后的2006年的影像。选择ViewLink/UnlinkViewersGeographic,点击另一图像进行连接,目视检测匹配情况。图1-
37、1-62002年影像与校正后2006年影像匹配情况1.2切割子图像选择DataPrepSubsetImage,Input选择resample06,Output命名为subset06,选择AOIAOIFile,然后选择wuhanchengqufanwei.aoi文件。图1-1-7切割后2002年武汉市遥感影像图1-1-8切割后2006年武汉市遥感影像1.3建立和编辑VECTOR图层以及矢量数据的栅格化操作流程:(1)在2002年遥感影像窗口中选择FileNewVectorLayer,命名为whurban02,并设置为单精度SinglePreciion,OK。选择ViewArrangeLayers
38、设置矢量层和影像层的叠放次序及有关属性。图1-1-9矢量层勾画2002年武汉市城区图1-1-10矢量层勾画2002年武汉市城区(2)选择VectorCleanVectorLayer,输入whurban02文件,输出文件命名为topology02.矢量数据转换为栅格数据则用VectortoRaster程序。输入topology02,输出命名为raster02,AnItemasPixelValue栏选择TOPOLOGY。对于whurban06也做相应处理。1.5建模进行图像分析操作流程:(1)选择ModelModelMaker,建立相应的输入、算法、输出模块。输入:raster02;(2)算法选择
39、条件语句ConditionalEITHERIF,写为:;输出:urban02.2006年数据也做相应处理。2.城区计算机解译操作流程:(1)打开准备好的图像subset02,选择FileNewAOILayer。完成后保存为AOI02.选择ClaifierSignatureEditor,将选择好的训练区逐个添加到其中。完成后保存为signature02.2006年数据也做相应处理;(2)打开ClaifierSupervisedClaification,选择输入文件:InputRasterFile:subset02;InputSignatureFile:signature02,输出文件命名为cla
40、ified02.图1-2-1计算机分类2002城区范围图1-2-2计算机分类2006城区范围3、城区变化检测3.1目视解译城区变化检测选择ModelModelMaker,建立相应的输入、算法、输出模块。输入:urban02和urban06;算法选择ConditionalCONDITIONSAL,写为:;输出:change。从而得到从2002年到2006年城区范围变化。图1-3-1目视解译2002-2006年武汉市城区范围变化3.2计算机分类城区变化检测选择ModelModelMaker,建立相应的输入、算法、输出模块。输入:claified02和claified06;算法选择Condition
41、alCONDITIONSAL,写为:输出:change2;图1-3-2计算机分类2002年至2006年武汉市城区范围变化4、统计分析4.1选择RasterAttribute,打开属性信息表格。选择窗口中的EditAddAreaColumn,增加各类像元面积统计的列。依据所制各图像属性信息表格,分别统计出两种解译方法各自所得的城区范围变化百分比。4.2分析:(1)对于由目视解译所得的结果而言,从2002年至2006年武汉市城区变化情况为:城区范围保持不变的部分约占2002年城区总面积的90.21%,城区扩张部分约占50.13%,城区缩减部分约占4.15%。2002年城区原范围基本保持不变,总体呈
42、现增长扩张趋势。(2)对于由计算机分类所得的结果而言,从2002年至2006年武汉市城区变化情况为:城区范围保持不变的部分约占2002年城区总面积的70.33%,城区扩张部分约占99.29%,城区缩减部分约占23.40%。2002年城区范围大部分保持不变,总体呈现极度增长扩张的趋势。二、多光谱数据地物光谱特征提取与分析1、原始数据ETM+原始数据为etm20021013wh文件,属于多光谱数据。图2-1-1原始数据图2-1-22002年原始图像2、辐亮度计算辐亮度指的是沿辐射方向的、单位面积、单位立体角上的辐射通量。度亮度可由DN值转换得到。亮度变换公式为:Lband=LDN(LMAXband
43、-LMINband)/255+LMINband操作流程:(1)在ENVI中,FileOpenImageFileETM+文件夹etm20021013wh;(2)BasicToolsPreproceingGeneralPurposeUtilitiesApplyGainandOffset;(3)Input选择etm20021013wh,Output定位并命名ETMfld。图2-2-1完成亮度转换3、表观反射率计算表观反射率:指大气层顶的反射率,辐射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。表观反射率计算,就是将图像的DN值转化为表观反射率,方法是先将其转化为辐亮度,再将辐亮度
44、转化为表观反射率。操作流程:(1)在ERDASImagine中,InterpreterSpectralEnhancementLandsat7ReflectanceConversion,Input选择ENVI(*.hdr)格式,上步所得幅亮度计算后文件ETMfld,Output命名为img格式的envibgfsl;(2)选择Conversion,输入数据(SolarElevation:46.6217594,SolarDistance:1)(3)在SolarDistance框中填入1,最后确定存储路径和名称,单击OK完成计算;(4)打开步骤(3)中得到的表观反射率文件,此时该文件还没有波长信息。在
45、AvailableBandsList选中该文件,右键单击,选择EditHeader,在弹出的HeaderInfo对话框中单击InputHeaderInfo,单击OtherFiles,选择有波长信息的文件如etm20021013wh文件,然后在窗口的DataType中选择被加入头信息的文件的类型;(5)完成后保存文件:FileSaveFileAsENVIStandard。命名为bgfslENVI。图2-3-1文件存储以及命名4、真实反射率计算真实反射率:在原始数据上,经过辐射定标后,根据一定的模型,通过大气校正得到的反射率。操作流程:(1)先把BSQ格式的辐亮度图像转换为BIL(或BIP)格式。
46、在ENVI中,BasicToolsConvertData(BSQ,BIL,BIP),Input选择之前得到的辐亮度图像ETMfld,Output格式选择BIL,并命名为BILfld;(2)使用FLAASH模块进行大气校正。SpectralFLAASH(或BasicToolsPreproceingCalibrationUtilitiesFLAASH);InputRadianceImage选择上一步转换好的BILfld文件,并选择Singlescalefactor选项,填写数值为10;OutputReflectanceFile定位并命名为dbfsl(即“地表辐射率”以与表观辐射率区分);Outpu
47、tDirectoryforFLAASHFiles指定存储文件夹路径;RootnameforFLAASHFiles填写根名为frn_;(3)设置相应信息如图所示,Apply运行。图2-4-1BSQ格式的辐亮度图像转换为BIL格式图2-4-2设置相应信息如上图三、高光谱数据地物光谱特征及其参数提取与分析1、EO-1高光谱真实数据真实数据:“whyujiashangb”文件为ENVI格式图像数据。图3-1-1真实数据信息图3-1-2whyujiashangb原始图像2、EO-1高光谱真实反射率计算及提取分析2.1EO-1高光谱真实反射率计算由于遥感卫星是在高空甚至是太空中,因此电磁波受到大量因素的影响,其中大气的影响最为严重,因此要对数据进行校正。操作流程:(1)将原始数据whujiashangb的BSQ格式转换为BIL格式;(2)在FAALSH中进行辐射校正(BasicToolsPreproceingCalibrationUtilitiesFLAASH),打开待校正图像文件后,弹出radiancescalefactors窗口,从ASCII文件中读取定标尺度转换因子;(3)设置相应信息如图所示,Apply运行。图3-2-1设置相应信息如上图图3-2-2填入相应数据2.2地物光谱特