《3.3.2简单的线性规划问题(一).ppt》由会员分享,可在线阅读,更多相关《3.3.2简单的线性规划问题(一).ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.3.2 简单的线性规划问题(一)简单的线性规划问题(一)55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy问题问题1 1:x 有无最大(小)值?有无最大(小)值?问题问题2 2:y 有无最大(小)值?有无最大(小)值?问题问题3 3:2 2x+y 有无最大(小)值?有无最大(小)值?作出下列不等式组的所表示的平面区域作出下列不等式组的所表示的平面区域把上面两个问题综合起来把上面两个问题综合起来:设设z=2x+y,求满足求满足时时,求求z的最大值和最小值的最大值和最小值.在同一坐标系上作出下列直线在同一坐
2、标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy直线直线L L越往右平移越往右平移,t,t随之增大随之增大.以经过点以经过点A(5,2)A(5,2)的的直线所对应的直线所对应的t t值值最大最大;经过点经过点B(1,1)B(1,1)的直线所对的直线所对应的应的t t值最小值最小.55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)O
3、xy设设z=2x+y,求满足求满足时时,求求z的最大值和最小值的最大值和最小值.线性目线性目标函数标函数线性约线性约束条件束条件线性规线性规划问题划问题任何一个满足任何一个满足不等式组的不等式组的(x,yx,y)可行解可行解可行域可行域所有的所有的最优解最优解有关概念有关概念由由x,y 的不等式的不等式(或方程或方程)组成的不等式组称为组成的不等式组称为x,y 的的约束条件约束条件。关于。关于x,y 的一次不等式或方程的一次不等式或方程组成的不等式组称为组成的不等式组称为x,y 的的线性约束条件线性约束条件。欲达。欲达到最大值或最小值所涉及的变量到最大值或最小值所涉及的变量x,y 的解析式称的
4、解析式称为为目标函数目标函数。关于。关于x,y 的一次目标函数称为的一次目标函数称为线性线性目标函数目标函数。求线性目标函数在线性约束条件下的。求线性目标函数在线性约束条件下的最大值或最小值问题称为最大值或最小值问题称为线性规划问题线性规划问题。满足线。满足线性约束条件的解(性约束条件的解(x,y)称为)称为可行解可行解。所有可行。所有可行解组成的集合称为解组成的集合称为可行域可行域。使目标函数取得最大。使目标函数取得最大值或最小值的可行解称为值或最小值的可行解称为最优解最优解。(1)指出线性约束条件和线性目标函数)指出线性约束条件和线性目标函数(2)画出可行域的图形)画出可行域的图形(3)说
5、出三个可行解)说出三个可行解(4)求出最优解)求出最优解例:例:例:例:x,yx,yx,yx,y满足关系式满足关系式满足关系式满足关系式的最值的最值的最值的最值求求求求解线性规划问题的步骤:解线性规划问题的步骤:(2 2)移:)移:(3 3)求:)求:(4 4)答:)答:(1 1)画:)画:画出线性约束条件所表示的可行域;画出线性约束条件所表示的可行域;在线性目标函数所表示的一组平行在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;有公共点且纵截距最大或最小的直线;通过解方程组求出最优解;通过解方程组求出最优解;几
6、个结论:几个结论:1、线性目标函数的最大(小)值一般、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界在可行域的顶点处取得,也可能在边界处取得。处取得。2、求线性目标函数的最优解,要注意、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义分析线性目标函数所表示的几何意义在在y轴上的截距或其相反数。轴上的截距或其相反数。课堂练习课堂练习(1)已知已知求求z=2x+y的最大值和最小值。的最大值和最小值。551Oxyy-x=0 x+y-1=01-1y+1=0A(2,-1)B(-1,-1)(2)已知)已知求求z=3x+5y的最大值和最小值。的最大值和最小值。551Oxy1-15x+3y=15X-5y=3y=x+1A(-2,-1)B(3/2,5/2)思考思考1:CA最大值是2,最小值是1B最大值是1,最小值是0C最大值是2,最小值是0D有最大值无最小值是作业:作业: