《人教六年级数学下册数学广角教案.pptx》由会员分享,可在线阅读,更多相关《人教六年级数学下册数学广角教案.pptx(84页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、会计学1人教六年级数学下册数学广角人教六年级数学下册数学广角 教教 学学 流流 程程 一、抽屉原理(一)的教学一、抽屉原理(一)的教学 三、抽取游戏的教学三、抽取游戏的教学 四、思维突破四、思维突破 五、才能突破五、才能突破二、抽屉原理(二)的教学二、抽屉原理(二)的教学第1页/共84页抽屉原理抽屉原理(一一)第2页/共84页游戏:你藏我猜游戏:你藏我猜 规则:规则:把把3 3个小球藏到两个抽个小球藏到两个抽屉里,必须把小球放进抽屉,让屉里,必须把小球放进抽屉,让我来猜猜,大家判断我猜的是否我来猜猜,大家判断我猜的是否对?对?第3页/共84页把四根小棒放进把四根小棒放进三个纸杯中有几三个纸杯中
2、有几种放法?种放法?小组合作小组合作第4页/共84页不管怎么放,至不管怎么放,至少有少有2根小棒要放根小棒要放进同一个纸杯里进同一个纸杯里.第5页/共84页把4枝笔放进3个盒子中。看看看看有有几几种种放放法法?通通过过摆摆放放,你你发发 现现 了了 什什 么么?不管怎么放,总有一个盒子里至少放进2枝笔.第6页/共84页不管怎么放,总有一个盒子里至少放进2枝铅笔.你你能能用用更更直直接接的的方方法法,只只摆摆一一种种情情况况,就就能能得得到到这这个个结结论论吗吗?通通过过这这样样摆摆放放 你你 有有 什什 么么 发发 现现?第7页/共84页 至少至少总有总有总有总有一个笔筒里一个笔筒里至少至少放
3、进放进2枝铅笔枝铅笔第8页/共84页把4枝铅笔放进3个笔筒里 如果每个笔筒里放如果每个笔筒里放1枝铅笔,枝铅笔,剩下的()枝铅笔剩下的()枝铅笔 所以,所以,总有总有一个笔筒里一个笔筒里至少至少放()枝铅笔。放()枝铅笔。312还要放进其中一个笔筒里,还要放进其中一个笔筒里,最多放(最多放()枝铅笔,)枝铅笔,第9页/共84页把5枝笔放进4个盒子中。第10页/共84页第11页/共84页 把把5枝铅笔放在枝铅笔放在4个文具盒里,还是个文具盒里,还是不管怎么不管怎么放放,总有一个文具盒里至少放进了总有一个文具盒里至少放进了2枝铅笔枝铅笔吗?吗?为什么会有这样为什么会有这样的结果?的结果?这样分实际
4、上是怎样分?怎样列这样分实际上是怎样分?怎样列式?式?平均分平均分54=1(个)(个)1(个)(个)11=2(个)个)第12页/共84页 把把5 5个苹果放进个苹果放进4 4个抽屉里,不管怎么放个抽屉里,不管怎么放总有一个抽屉里至少有(总有一个抽屉里至少有()苹果。)苹果。第13页/共84页第14页/共84页5可以分成(可以分成(5、0、0、0)、()、(4、1、0、0)、()、(3、2、0、0)、()、(3、1、1、0)(2、2、1、0)、()、(2、1、1、1)第15页/共84页54=1(个)(个)1(个)(个)11=2(个)个)第16页/共84页 把把6枝铅笔放在枝铅笔放在4个文具个文具
5、盒里,会有什么结果呢?盒里,会有什么结果呢?讨论:讨论:第17页/共84页1、如果把、如果把6个苹果放入个苹果放入5个抽屉中,至少有几个个抽屉中,至少有几个放到同一个抽屉里?放到同一个抽屉里?(2个)2、如果把、如果把7个苹果放入个苹果放入6个抽屉中,至少有几个个抽屉中,至少有几个放到同一个抽屉里呢?放到同一个抽屉里呢?3、如果把、如果把100个苹果放入个苹果放入99个抽屉中,至少有几个抽屉中,至少有几个放到同一个抽屉里呢?个放到同一个抽屉里呢?(2个)(2个)4、如果把、如果把6个苹果放入个苹果放入4个抽屉中,至少有几个个抽屉中,至少有几个苹果被放到同一个抽屉里呢?苹果被放到同一个抽屉里呢?
6、5、如果把、如果把8个苹果放入个苹果放入5个抽屉中,至少有几个个抽屉中,至少有几个苹果被放到同一个抽屉里呢?苹果被放到同一个抽屉里呢?(2个)(2个)你发现了什么规律?你发现了什么规律?第18页/共84页 只要物体数量是抽屉数只要物体数量是抽屉数量的量的1倍多,总有一个抽屉倍多,总有一个抽屉里里 放进放进2个的物体。个的物体。至少至少把把m m个物体放进个物体放进n n个空抽屉中(个空抽屉中(mnmn且且 m m,n n为自然数为自然数),则一定,则一定有一个有一个抽屉中抽屉中至少至少放了放了2 2个物体个物体第19页/共84页 “抽屉原理抽屉原理”又称又称“鸽鸽笼原理笼原理”,最先是由,最先
7、是由1919世纪世纪的德国数学家狄利克雷提出的德国数学家狄利克雷提出来的,所以又称来的,所以又称“狄里克雷狄里克雷原理原理”,这一原理在解决实,这一原理在解决实际问题中有着广泛的应用。际问题中有着广泛的应用。“抽屉原理抽屉原理”的应用是千变的应用是千变万化的,用它可以解决许多万化的,用它可以解决许多有趣的问题,并且常常能得有趣的问题,并且常常能得到一些令人惊异的结果。下到一些令人惊异的结果。下面我们应用这一原理解决问面我们应用这一原理解决问题。题。第20页/共84页 七只鸽子飞回五个鸽舍,至少有两只七只鸽子飞回五个鸽舍,至少有两只鸽子飞回同一个鸽舍里,为什么?鸽子飞回同一个鸽舍里,为什么?第2
8、1页/共84页 如果每个鸽舍里飞进一只鸽子,最多飞进如果每个鸽舍里飞进一只鸽子,最多飞进5只鸽子,只鸽子,7只鸽子飞回只鸽子飞回5个鸽舍,至少有(个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。只鸽子要飞进同一个鸽舍里。剩下的剩下的2只鸽子飞进其中的一个鸽舍里或分别飞进两只鸽子飞进其中的一个鸽舍里或分别飞进两个鸽舍里,个鸽舍里,所以,所以,至少至少有有2只只鸽子要飞进同一个鸽舍里。鸽子要飞进同一个鸽舍里。2第22页/共84页至少数至少数=商数商数+1计算绝招计算绝招整除时整除时 至少数至少数=商数商数物体数物体数抽屉数抽屉数第23页/共84页 大家玩过石头大家玩过石头.剪刀剪刀.布的游戏吗布的游戏
9、吗?如如果请一位同学任意划四次果请一位同学任意划四次,肯定至少有肯定至少有2次划出的手势是一样的。次划出的手势是一样的。想:把什么当作抽屉,把什么当作要分的物体?想:把什么当作抽屉,把什么当作要分的物体?想:把什么当作抽屉,把什么当作要分的物体?想:把什么当作抽屉,把什么当作要分的物体?43=1(次)(次)1(次)(次)11=2(次)(次)第24页/共84页(1)(1)(1)(1)三个小朋友同行,其中必有三个小朋友同行,其中必有三个小朋友同行,其中必有三个小朋友同行,其中必有 两个小朋友性别相同。两个小朋友性别相同。两个小朋友性别相同。两个小朋友性别相同。三个三个三个三个性别性别性别性别小朋友
10、小朋友小朋友小朋友第25页/共84页(2)(2)(2)(2)从电影院中任意找来从电影院中任意找来从电影院中任意找来从电影院中任意找来13131313个观众,个观众,个观众,个观众,至少有两个人属相相同。至少有两个人属相相同。至少有两个人属相相同。至少有两个人属相相同。13131313人人人人12121212属属属属1212个抽屉个抽屉 1313个苹果个苹果1312=1(个)(个)1(个)(个)11=2(个)(个)第26页/共84页 从电影院中任意找来从电影院中任意找来从电影院中任意找来从电影院中任意找来15151515个观众,至少个观众,至少个观众,至少个观众,至少有几个人属相相同?有几个人属
11、相相同?有几个人属相相同?有几个人属相相同?15151515人人人人12121212属相属相属相属相1212个抽屉个抽屉 1515个物体个物体151213112(人)(人)答:至少有答:至少有2个人属相相同。个人属相相同。第27页/共84页议一议:议一议:n8只只 在在7棵棵 上玩上玩耍,在同一棵耍,在同一棵 至少至少有有 在玩耍,为什在玩耍,为什么?么?第28页/共84页 六年级四个班去春游,自由活动时,有六年级四个班去春游,自由活动时,有六年级四个班去春游,自由活动时,有六年级四个班去春游,自由活动时,有6 6 6 6个同学聚在一个同学聚在一个同学聚在一个同学聚在一起,可以肯定,这起,可以
12、肯定,这起,可以肯定,这起,可以肯定,这6 6 6 6个同学至少有几个人是同一个班的?个同学至少有几个人是同一个班的?个同学至少有几个人是同一个班的?个同学至少有几个人是同一个班的?6 6 6 6个个个个4 4 4 4个班个班个班个班同学同学同学同学6 6 6 6个物体个物体个物体个物体6412112(人)(人)答:这答:这6个同学至少有个同学至少有2个人是同一个班的。个人是同一个班的。第29页/共84页 五年一班共有学生五年一班共有学生五年一班共有学生五年一班共有学生53535353人,他们的年龄都相同,人,他们的年龄都相同,人,他们的年龄都相同,人,他们的年龄都相同,请你证明至少有两个小朋
13、友出生在一周。请你证明至少有两个小朋友出生在一周。请你证明至少有两个小朋友出生在一周。请你证明至少有两个小朋友出生在一周。1 1 1 1年有年有年有年有52525252周周周周53535353个生日个生日个生日个生日 52525252个个个个5353个个5352=1(个)(个)1(个)(个)11=2(个)(个)第30页/共84页 在学习中,同学们要着重在学习中,同学们要着重在学习中,同学们要着重在学习中,同学们要着重 注意在每一道题中怎样识别注意在每一道题中怎样识别注意在每一道题中怎样识别注意在每一道题中怎样识别“抽屉抽屉抽屉抽屉”,又把什么当作,又把什么当作,又把什么当作,又把什么当作“苹果
14、苹果苹果苹果”,而且苹果的数目一定要大于而且苹果的数目一定要大于而且苹果的数目一定要大于而且苹果的数目一定要大于 抽屉的数目。抽屉的数目。抽屉的数目。抽屉的数目。必须把题目中的一些条件必须把题目中的一些条件必须把题目中的一些条件必须把题目中的一些条件想成想成想成想成“抽屉抽屉抽屉抽屉”,并知道它的数,并知道它的数,并知道它的数,并知道它的数目,如上面例子中的小朋友目,如上面例子中的小朋友目,如上面例子中的小朋友目,如上面例子中的小朋友性别(性别(性别(性别(2 2 2 2种)、一年的周数种)、一年的周数种)、一年的周数种)、一年的周数(52525252周)、鸽笼等。周)、鸽笼等。周)、鸽笼等。
15、周)、鸽笼等。必须把题目中的一些条件必须把题目中的一些条件必须把题目中的一些条件必须把题目中的一些条件想成想成想成想成“苹果苹果苹果苹果”,并知道数目,如,并知道数目,如,并知道数目,如,并知道数目,如上面的小朋友、鸽子、水果等。上面的小朋友、鸽子、水果等。上面的小朋友、鸽子、水果等。上面的小朋友、鸽子、水果等。第31页/共84页 请你任意写出请你任意写出4 4个自然数,在这个自然数,在这4 4个自然个自然数中,必定有这样的两个数,它们的差是数中,必定有这样的两个数,它们的差是3 3的倍数,试一试,想一想,为什么?的倍数,试一试,想一想,为什么?第32页/共84页谈一谈:本节课你有啥收获?谈一
16、谈:本节课你有啥收获?没有大胆的的猜想,就没有伟大的发明和发现。牛顿 第33页/共84页抽屉原理抽屉原理(二二)第34页/共84页如果一共有如果一共有7 7本书会怎样呢?本书会怎样呢?如果一共有如果一共有9 9本书会怎样呢?本书会怎样呢?看看有几种看看有几种放法?通过放法?通过观察,你发观察,你发现了什么?现了什么?第35页/共84页 把把5本书进本书进2个抽屉中,不管怎么放,总有一个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书。这是为什么?个抽屉至少放进多少本书。这是为什么?52=21 21=3(本)被被分分物物体体抽抽屉屉数数每每抽抽屉屉数数量量还还剩剩数数量量每每抽抽屉屉数数量量至至
17、少少数数第36页/共84页 把把7本书进本书进2个抽屉中,不管怎么放,总有一个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?个抽屉至少放进多少本书?为什么?72=3131=4(本)(本)第37页/共84页 把把9本书进本书进2个抽屉中,不管怎么放,总有一个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?个抽屉至少放进多少本书?为什么?92=4141=5(本)(本)第38页/共84页总有一个抽屉里至少有几本总有一个抽屉里至少有几本”只要用只要用“商商+1”就可以得到。就可以得到。第39页/共84页1、如果把、如果把9个苹果放入个苹果放入4个抽个抽屉中,总有一个抽屉里至少屉中
18、,总有一个抽屉里至少放了(放了()个苹果。)个苹果。2、如果把、如果把14个苹果放入个苹果放入4个个抽屉中,抽屉中,总有一个抽屉里至总有一个抽屉里至少放了(少放了()个苹果。)个苹果。你又有什么你又有什么新发现?新发现?3494=2(个)(个)1(个)(个)144=3(个)(个)2(个)(个)第40页/共84页 把把m个物体放入个物体放入n个抽屉里个抽屉里(mn),如果,如果m n=bk,那么总有一个抽屉里至少放那么总有一个抽屉里至少放入入(b+1)个的物体。个的物体。注:是注:是(b+1)个物体,而不是个物体,而不是(b+k)个物体。个物体。比一比:两个抽屉原理有何区别比一比:两个抽屉原理有
19、何区别?“原理原理1 1”和和“原理原理2 2”的区别是:原理的区别是:原理1 1苹果多,抽屉少,数量比较接近;原理苹果多,抽屉少,数量比较接近;原理2 2虽然也是苹果多,抽屉少,但是数量相虽然也是苹果多,抽屉少,但是数量相差较大,苹果个数比抽屉个数的几倍还差较大,苹果个数比抽屉个数的几倍还多几。多几。第41页/共84页83=2(只)2(只)21=3(只)8只鸽子飞回只鸽子飞回3个鸽舍,至少有(个鸽舍,至少有()只鸽子)只鸽子要飞进同一个鸽舍。为什么?要飞进同一个鸽舍。为什么?3我们先让一个鸽舍里飞进我们先让一个鸽舍里飞进2只鸽子,只鸽子,3个鸽舍最多可个鸽舍最多可飞进飞进6只鸽子,还剩下只鸽
20、子,还剩下2只鸽子,无论怎么飞,所以只鸽子,无论怎么飞,所以至少有至少有3只鸽子要飞进同一个笼子里。只鸽子要飞进同一个笼子里。第42页/共84页 11 11 11 11个小朋友同行,其中至少有多少个小朋个小朋友同行,其中至少有多少个小朋个小朋友同行,其中至少有多少个小朋个小朋友同行,其中至少有多少个小朋友性别相同?友性别相同?友性别相同?友性别相同?11111111个个个个性别性别性别性别小朋友小朋友小朋友小朋友11111111个物体个物体个物体个物体11251516(个)(个)答:其中至少有答:其中至少有6个小朋友性别相同。个小朋友性别相同。第43页/共84页 用三种颜色给正方体的各面涂色(
21、每面只用三种颜色给正方体的各面涂色(每面只用三种颜色给正方体的各面涂色(每面只用三种颜色给正方体的各面涂色(每面只涂一种颜色),那么至少有几个面涂色相同?涂一种颜色),那么至少有几个面涂色相同?涂一种颜色),那么至少有几个面涂色相同?涂一种颜色),那么至少有几个面涂色相同?三种色三种色三种色三种色6 6 6 6个面个面个面个面6个物体个物体632(个)(个)答:至少有答:至少有2个面涂色相同。个面涂色相同。第44页/共84页 2、有25个玩具,放在4个箱子里,有一个箱子里至少有()个玩具。7 7 3、我校六年级男生有30人,至少有()名男生的生日是在同一个月。3计算绝招计算绝招物体数物体数抽屉
22、数抽屉数至少数至少数=商数商数+1整除时整除时 至少数至少数=商数商数1、把、把13只小兔子关在只小兔子关在5个笼子里,至少有(个笼子里,至少有()只兔子要关在同一个笼子里。)只兔子要关在同一个笼子里。3第45页/共84页n n1 1 1 1、如果把、如果把、如果把、如果把5 5 5 5个苹果放进个苹果放进个苹果放进个苹果放进3 3 3 3个抽屉里,不管怎么放,个抽屉里,不管怎么放,个抽屉里,不管怎么放,个抽屉里,不管怎么放,总有一个抽屉里至少有几个苹果?总有一个抽屉里至少有几个苹果?总有一个抽屉里至少有几个苹果?总有一个抽屉里至少有几个苹果?2、如果把、如果把8个苹果放进个苹果放进3个抽屉里
23、,不管怎么放,个抽屉里,不管怎么放,总有一个抽屉里至少有几个苹果?总有一个抽屉里至少有几个苹果?3、如果把、如果把158个苹果放进个苹果放进3个抽屉里,不管怎么个抽屉里,不管怎么放,总有一个抽屉里至少有几个苹果?放,总有一个抽屉里至少有几个苹果?4 4、六(、六(7 7)班有学生)班有学生5555人,我们可以肯定,人,我们可以肯定,在这在这5555人中,至少有人中,至少有 人的生日人的生日在同一个月?想一想,为什么?在同一个月?想一想,为什么?第46页/共84页 初一有初一有4747名同学参加一次数学竞赛,成绩名同学参加一次数学竞赛,成绩都是整数,满分都是整数,满分100100分。已知分。已知
24、3 3名同学的成绩在名同学的成绩在6060分以下,其余同学的成绩在分以下,其余同学的成绩在75759595分之间,分之间,问:至少有几名同学的成绩相同?问:至少有几名同学的成绩相同?有十只鸽笼,为保证每只鸽笼中最多住一有十只鸽笼,为保证每只鸽笼中最多住一有十只鸽笼,为保证每只鸽笼中最多住一有十只鸽笼,为保证每只鸽笼中最多住一只鸽子(可以不住鸽子),那么鸽子总数只鸽子(可以不住鸽子),那么鸽子总数只鸽子(可以不住鸽子),那么鸽子总数只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请你用抽屉原理说明你的最多能有几只?请你用抽屉原理说明你的最多能有几只?请你用抽屉原理说明你的最多能有几只?请你用抽
25、屉原理说明你的结论。结论。结论。结论。第47页/共84页课堂小结课堂小结 1用抽屉原理解题的步骤:用抽屉原理解题的步骤:(1)分析题意:)分析题意:找好找好“抽屉抽屉”与与“苹果苹果”。(2)设计设计抽屉原理。(有时需抽屉原理。(有时需要要构造抽屉构造抽屉)(3)运用原理,)运用原理,得出得出“抽屉抽屉”中分中分 放放“苹果苹果”的个数。的个数。2体会由特殊到一般解决问题的体会由特殊到一般解决问题的数学思想。数学思想。第48页/共84页1 1、7 7只鸽子飞回只鸽子飞回6 6个鸽舍,至少有个鸽舍,至少有2 2只鸽子要飞进同一个只鸽子要飞进同一个鸽舍里?为什么?鸽舍里?为什么?2 2、1919朵
26、花插入朵花插入4 4个花瓶里,至少有一个花瓶里要插入个花瓶里,至少有一个花瓶里要插入5 5朵或朵或5 5朵以上的鲜花。为什么?朵以上的鲜花。为什么?3 3、小林参加飞镖比赛,投出、小林参加飞镖比赛,投出8 8镖,成绩是镖,成绩是6767环。小林至环。小林至少有一镖不低于少有一镖不低于9 9环,为什么?环,为什么?4 4、某小学今年入学的一年级新生中有、某小学今年入学的一年级新生中有121121名学生,这些名学生,这些新生中至少有新生中至少有1111人是同一个月出生的。为什么?人是同一个月出生的。为什么?5 5、麻湖小学六年级学生有、麻湖小学六年级学生有3131人是人是9 9月份出生的,至少有月
27、份出生的,至少有多少人出生在同一天?多少人出生在同一天?6 6、六年级共有男生、六年级共有男生5555人,至少有人,至少有2 2名男生在同一个星期名男生在同一个星期过生日,为什么?过生日,为什么?第49页/共84页n n试说明试说明试说明试说明:在任意的:在任意的:在任意的:在任意的38383838人中,至少有四人的属相人中,至少有四人的属相人中,至少有四人的属相人中,至少有四人的属相相同。相同。相同。相同。1 1)把)把2323只笔放入只笔放入3 3个笔筒中,至少有一个笔筒的个笔筒中,至少有一个笔筒的笔不少于几只?为什么?笔不少于几只?为什么?2 2)小王把)小王把1111本书放进本书放进3
28、 3个书包里,至少有几本书个书包里,至少有几本书放入同一个书包里?为什么?放入同一个书包里?为什么?3 3)张叔叔参加飞镖比赛,投了)张叔叔参加飞镖比赛,投了5 5镖,成绩是镖,成绩是4141环,环,张叔叔至少有一镖不低于张叔叔至少有一镖不低于9 9环,为什么?环,为什么?4 4)2525个玻璃球最多放进几个盒子,才能保证至个玻璃球最多放进几个盒子,才能保证至少有一个盒子有少有一个盒子有5 5个玻璃球?个玻璃球?5 5)把)把248248本书分给六(本书分给六(2 2)学生,如果其中至少)学生,如果其中至少有有1 1人分到人分到7 7本书,那么,这个班最多有多少人本书,那么,这个班最多有多少人
29、?第50页/共84页六年级数学下册六年级数学下册数学广角数学广角第51页/共84页1 1、把、把1515个球放进个球放进4 4个箱子里,至少有(个箱子里,至少有()个球要放进同一个箱子里。个球要放进同一个箱子里。42 2、六(、六(1 1)班有)班有5454位同学,至少有(位同学,至少有()人是)人是同一个月过生日的。同一个月过生日的。53 3、把红、黄两种颜色的球各、把红、黄两种颜色的球各6 6个放到一个袋子个放到一个袋子里,任意取出里,任意取出5 5个,至少有(个,至少有()个同色。)个同色。34 4、把红、黄、白三种颜色的球各、把红、黄、白三种颜色的球各5 5个放到一个放到一个袋子里,任
30、意取出个袋子里,任意取出8 8个,至少有(个,至少有()个同)个同色。色。3第52页/共84页 盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?第53页/共84页活动(一)摸球游戏及要求:活动(一)摸球游戏及要求:、一次摸出、一次摸出2个球,有几种情况?个球,有几种情况?观察出现的情况,结果是(观察出现的情况,结果是()摸)摸出出2个同色的球。(选择个同色的球。(选择“可能可能”或或“一定一定”填空)填空)2、一次摸出、一次摸出3个球,有几种情况?观个球,有几种情况?观察出现的情况,结果是(察出现的情况,结果是()摸出)摸出2个同色的球。(选择个同色的球。(
31、选择“可能可能”或或“一一定定”填空。填空。可能可能一定一定第54页/共84页有两种颜色,摸3个球,就能保证有两个球同色.第55页/共84页只要摸出的球比它们的颜色种数多1,就能保证有两个球同色.要保证两个球同色:要保证两个球同色:摸出的球数摸出的球数=颜色种类颜色种类+1第56页/共84页把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?411=5(个)(个)第57页/共84页有黄白红三种小球若干个,每次从箱中摸出2个小球,至少摸多少次才能保证取到两个颜色相同的球?311=4(个)(个)42=2(次)(次)第58页/共84页例:把一些铅笔放进例
32、:把一些铅笔放进3个文具盒中,保证其中一个文个文具盒中,保证其中一个文具盒至少有具盒至少有4枝铅笔,原来至少有多少枝铅笔?枝铅笔,原来至少有多少枝铅笔?至少:只有一个文具盒有至少:只有一个文具盒有 枝,枝,其余都是其余都是 枝枝4(4-1)333+13(4-1)+1=10(枝)(枝)求总数求总数=抽屉抽屉(至少(至少-1)+1要分的份数要分的份数其中一个多其中一个多1第59页/共84页1、盒子里有同样大小的黑球和白球各、盒子里有同样大小的黑球和白球各6个。要想摸出的个。要想摸出的球一定有球一定有2个同色的,最少要摸出几个球?个同色的,最少要摸出几个球?+1=(个)(个)2、把红、黄、蓝、三种颜
33、色的球各、把红、黄、蓝、三种颜色的球各5个放到一个袋子个放到一个袋子里。最少取多少个球,可以保证取到两个颜色相同的里。最少取多少个球,可以保证取到两个颜色相同的球?球?3+1=4(个)(个)3、把红、蓝、黄三种颜色的小棒各、把红、蓝、黄三种颜色的小棒各10根混在一起。如根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒?根同色的小棒?3+1=4(个)(个)第60页/共84页4、盒子里有同样大小的红球和蓝球各、盒子里有同样大小的红球和蓝球各4个。要想摸出的个。要想摸出的球一定有球一定有 2 个同色的,最少要摸出几个球?个同色的
34、,最少要摸出几个球?2+1=5(个)(个)5、把红、蓝、黄三种颜色的小棒各、把红、蓝、黄三种颜色的小棒各10根混在一起。如根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有果让你闭上眼睛,每次最少拿出几根才能保证一定有根同色的小棒?根同色的小棒?3+1=7(个)(个)6、箱子里有、箱子里有5种不同品牌的果冻各种不同品牌的果冻各20粒,要想保证摸到粒,要想保证摸到同品牌的果冻同品牌的果冻4粒,最少要摸出多少粒果冻?粒,最少要摸出多少粒果冻?35+1=16(个)(个)第61页/共84页(7)(7)(7)(7)一副扑克牌有四种花色,从中随意抽一副扑克牌有四种花色,从中随意抽一副扑克牌有四种
35、花色,从中随意抽一副扑克牌有四种花色,从中随意抽牌,问:最少要抽出多少张牌,才能保证有牌,问:最少要抽出多少张牌,才能保证有牌,问:最少要抽出多少张牌,才能保证有牌,问:最少要抽出多少张牌,才能保证有两张牌是同一花色的?两张牌是同一花色的?两张牌是同一花色的?两张牌是同一花色的?4 4 4 4种花种花种花种花抽抽抽抽 牌牌牌牌4 4个抽屉个抽屉 14+12=7(张)(张)第62页/共84页 一副扑克牌一副扑克牌一副扑克牌一副扑克牌(除去大小王除去大小王除去大小王除去大小王)52)52)52)52张中有四种花色,从中随张中有四种花色,从中随张中有四种花色,从中随张中有四种花色,从中随意抽意抽意抽
36、意抽5 5 5 5张牌,无论怎么抽张牌,无论怎么抽张牌,无论怎么抽张牌,无论怎么抽,为什么至少总有两张牌是同一为什么至少总有两张牌是同一为什么至少总有两张牌是同一为什么至少总有两张牌是同一花色的?花色的?花色的?花色的?四种花色四种花色四种花色四种花色抽抽抽抽 牌牌牌牌物体数物体数5411112(张)(张)第63页/共84页 一幅扑克,拿走大、小王一幅扑克,拿走大、小王后还有后还有5252张牌,请你任意抽出张牌,请你任意抽出其中的其中的5 5张牌,那么你可以确张牌,那么你可以确定什么?为什么?定什么?为什么?第64页/共84页1、52张扑克牌,从中至少摸出多少张就能保证张扑克牌,从中至少摸出多
37、少张就能保证其中至少有两张同点数?如果不除去大、小王其中至少有两张同点数?如果不除去大、小王呢?呢?2、一付扑克牌共有、一付扑克牌共有52张(除去大王、小王)张(除去大王、小王),至少从中取多少张牌至少从中取多少张牌,才能保证其中必有才能保证其中必有2种花种花色色.3、一副扑克牌,拿走两个王。至少抽出多少、一副扑克牌,拿走两个王。至少抽出多少张,才能保证至少有两张牌花色相同?张,才能保证至少有两张牌花色相同?4、一副扑克牌,拿走两个王。至少抽出多少、一副扑克牌,拿走两个王。至少抽出多少张,才能保证有张,才能保证有4张牌是同一花色的?张牌是同一花色的?131+1=14(张)(张)131+1=14
38、(张)(张)41+1=5(张)(张)43+1=13(张)(张)第65页/共84页(4)(4)(4)(4)在一只口袋中有红色与黄色球各在一只口袋中有红色与黄色球各在一只口袋中有红色与黄色球各在一只口袋中有红色与黄色球各4 4 4 4只,只,只,只,现有现有现有现有4 4 4 4个小朋友,每人可从口袋中随意取出个小朋友,每人可从口袋中随意取出个小朋友,每人可从口袋中随意取出个小朋友,每人可从口袋中随意取出 2 2 2 2个小球,请你证明必有两个小朋友,他们个小球,请你证明必有两个小朋友,他们个小球,请你证明必有两个小朋友,他们个小球,请你证明必有两个小朋友,他们 取出的两个小球的颜色完全一样。取出
39、的两个小球的颜色完全一样。取出的两个小球的颜色完全一样。取出的两个小球的颜色完全一样。每个小朋友取出两种颜色的球的每个小朋友取出两种颜色的球的每个小朋友取出两种颜色的球的每个小朋友取出两种颜色的球的颜色组合只有颜色组合只有颜色组合只有颜色组合只有3 3 3 3种可能:种可能:种可能:种可能:第66页/共84页 一盒围棋棋子,黑白子混放,我们任意一盒围棋棋子,黑白子混放,我们任意摸出摸出3 3个棋子,至少有个棋子,至少有2 2个棋子是同颜色的,个棋子是同颜色的,为什么?为什么?第67页/共84页1、把一些铅笔放进3个文具盒中,保证其中一个文具盒至少有4枝铅笔,原来至少有多少枝铅笔?2、把我们班至
40、少有10人在同一个月里生日,请问我们班至少有多少人?3、木箱里装有红色球个、黄色球个、蓝色球个,若、木箱里装有红色球个、黄色球个、蓝色球个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?要取出多少个球?4、有一些鸽子飞入、有一些鸽子飞入7个笼子里,为了保证有其中一个笼子个笼子里,为了保证有其中一个笼子里至少有里至少有4鸽子,那么这些鸽子至少有多少只?鸽子,那么这些鸽子至少有多少只?7(41)1=22(只)(只)每个笼子平均每个笼子平均分后的数量分后的数量再加上余数的再加上余数的1个个第68页/共84页六年级数学下册六年
41、级数学下册数学广角数学广角第69页/共84页抽屉原理抽屉原理 在有些问题中在有些问题中在有些问题中在有些问题中,“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”不是很明显不是很明显不是很明显不是很明显,需要我们制造出需要我们制造出需要我们制造出需要我们制造出“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”.制造出制造出制造出制造出“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”是比较困难的是比较困难的是比较困难的是比较困难的,这一方面需要同学们去这一方面需要同学们去这一方面需要同学们去这一方面需要同学们去分析题目中的分析题目中的分析题目中的分析题目中的 条件和问题条件和问题条件和问题条件和问题
42、,另一方面需要多做另一方面需要多做另一方面需要多做另一方面需要多做 一些题来积累经验一些题来积累经验一些题来积累经验一些题来积累经验.第70页/共84页 突破突破1:要解决抽屉问题,关键要弄清楚把什么要解决抽屉问题,关键要弄清楚把什么看成抽屉,有多少个。若题目明确的抽看成抽屉,有多少个。若题目明确的抽屉和有多少个抽屉,需要先分析,再用屉和有多少个抽屉,需要先分析,再用抽屉原理说明。抽屉原理说明。例例1:敬老院买来许多苹果、橘子和梨,每位老人任:敬老院买来许多苹果、橘子和梨,每位老人任意先两个,那么,至少应有几位老人才能保证必有两意先两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选
43、的水果相同?位或两位以上老人所选的水果相同?这里,我们可以把敬老院老人人数看作抽屉原理中的物体,关键是要找抽屉数了,因为三种水果任选两个的搭配有这里,我们可以把敬老院老人人数看作抽屉原理中的物体,关键是要找抽屉数了,因为三种水果任选两个的搭配有6种,所以既然有种,所以既然有6个个“抽屉抽屉”,必须至少有,必须至少有7个个“物体物体”才能保证两个或两个以上的物体放在同一个抽屉里,即至少有才能保证两个或两个以上的物体放在同一个抽屉里,即至少有7位老人。位老人。6(21)1=7(位)(位)幼儿园小朋友分苹果、梨、橘子这三种水果。如果每个小朋友任幼儿园小朋友分苹果、梨、橘子这三种水果。如果每个小朋友任
44、意拿意拿两个不同种类的水果两个不同种类的水果,那么至少几个小朋友拿过后,才一定,那么至少几个小朋友拿过后,才一定能出现两人拿的水果是相同的?能出现两人拿的水果是相同的?变一变:变一变:幼儿园买来不少猪、狗、马塑料玩具,每个小朋友幼儿园买来不少猪、狗、马塑料玩具,每个小朋友任意选任意选择两件,择两件,那么至少要有几个小朋友选完后,才能保证有两那么至少要有几个小朋友选完后,才能保证有两人选的玩具相同?人选的玩具相同?第71页/共84页 变一变:变一变:1、元旦庆祝会上老师买来了很多水果糖和奶糖,每、元旦庆祝会上老师买来了很多水果糖和奶糖,每位同学最多可以吃位同学最多可以吃3块,也可以不吃。全班块,
45、也可以不吃。全班56个人至个人至少有多少人吃的两种糖完全一样?少有多少人吃的两种糖完全一样?提示:首先考虑选糖的几种可能性,选一种、两种、三种或不选的共有10种类型。把10种类型看成10个抽屉,56人看成物体,把56个物体放进10个抽屉里,用5610=5(人)6(块),51=6(人),因此至少有6人吃的两种糖完全一样。2、有、有50个学生共同参加体操表演,其中最小的个学生共同参加体操表演,其中最小的9岁,岁,最大的最大的12岁。参加体操表演的学生中是否一定有两个岁。参加体操表演的学生中是否一定有两个学生是在同年同月出生的?学生是在同年同月出生的?提示:从9岁到12岁共有4年,合48个月。把48
46、个月看作抽屉,50个学生看作物体,根据“抽屉原理”可知,参加体操表演的学生中一定有两个是在同年同月出生的。第72页/共84页 突破突破2:要求抽屉问题中的抽屉数,可用分放物要求抽屉问题中的抽屉数,可用分放物体的总数减体的总数减1再除以其中一个抽屉里至少再除以其中一个抽屉里至少有的物体个数减有的物体个数减1。例例2:把:把25个球最多放在几个盒子里,才能至少有一个球最多放在几个盒子里,才能至少有一个凳子里有个凳子里有7个球?个球?把盒子数看成抽屉数,要使其中一个抽屉里至少有把盒子数看成抽屉数,要使其中一个抽屉里至少有7个球。则球的个数应比抽屉数的(个球。则球的个数应比抽屉数的(71)倍多)倍多1
47、个,而(个,而(251)(71)=4,所以最多放进,所以最多放进4个盒子里,才能保证至少有一个盒子里有个盒子里,才能保证至少有一个盒子里有7个球。个球。变一变:变一变:把把16枝铅笔最多放入几个盒内,才能保枝铅笔最多放入几个盒内,才能保证至少有一个笔盒里的笔不少于证至少有一个笔盒里的笔不少于6枝。枝。提示:把提示:把16枝铅笔看作物体,要使其中一个抽屉里至少有枝铅笔看作物体,要使其中一个抽屉里至少有6枝,则铅笔的枝数应比抽屉数的确枝,则铅笔的枝数应比抽屉数的确5倍多倍多1个,而(个,而(161)(61)=3,所以最多放入,所以最多放入3个笔盒内,才能保证至少有一个笔盒里的笔不少于个笔盒内,才能
48、保证至少有一个笔盒里的笔不少于6枝。枝。第73页/共84页 突破突破3:利用利用“最不利原则最不利原则”解决问题。解决问题。例例3:一个袋子里装有红、黄、蓝袜子各:一个袋子里装有红、黄、蓝袜子各5只,问一次只,问一次至少取出多少只才能保证每种颜色至少有一只?至少取出多少只才能保证每种颜色至少有一只?思路导航:我们从思路导航:我们从“最不利原则最不利原则”的角度去考虑。如果先取的角度去考虑。如果先取5只全是红的,那么只好再取只全是红的,那么只好再取5只,假设只,假设5只又全是黄的,这时,再取只又全是黄的,这时,再取1只一定是蓝的了,这样取只一定是蓝的了,这样取521=11(只)才能保证每种颜色至
49、少有(只)才能保证每种颜色至少有1只。只。变一变:变一变:421=9(张)(张)教师拿出红桃、黑桃、方片三处颜色的教师拿出红桃、黑桃、方片三处颜色的扑克各扑克各4张,问一次至少摸出多少张才能张,问一次至少摸出多少张才能保证每种颜色至少有一张?保证每种颜色至少有一张?第74页/共84页 突破突破3:根据题意巧设抽屉,解决问题。根据题意巧设抽屉,解决问题。例例4:从:从110这这10个数中任选个数中任选6个数,其中一定有两个数,其中一定有两个数的和是个数的和是11。你能说出其中运用了什么道理吗?。你能说出其中运用了什么道理吗?思路导航:根据题意思路导航:根据题意“其中一定有两个数的和是其中一定有两
50、个数的和是11”可以把可以把1至至10分成(分成(1,10)、()、(2,9)、()、(3,8)、()、(4,7)、()、(5,6)这样的)这样的5组,即组,即5个抽屉。而任选个抽屉。而任选6个数就是被分物。则有个数就是被分物。则有65=11,所以任取,所以任取6个数,至少有个数,至少有2个数是同一组的,则和必定是个数是同一组的,则和必定是11。此题利用了抽屉原理。此题利用了抽屉原理。变一变:变一变:任意任意5个不相同的自然数,其中至少有两个不相同的自然数,其中至少有两个数的差是个数的差是4的倍数,这是为什么?的倍数,这是为什么?提示:一个自然数除以提示:一个自然数除以4的余数可能是的余数可能