《贾俊平统计学第五版第7章参数估计.ppt》由会员分享,可在线阅读,更多相关《贾俊平统计学第五版第7章参数估计.ppt(80页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、7-1作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)第第 7 章章 参数估计参数估计作者:中国人民大学统计学院作者:中国人民大学统计学院贾俊平贾俊平统计学7-2作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)第第 7 章章 参数估计参数估计 参数估计的一般问题参数估计的一般问题 7.2 一个总体参数的区间估计一个总体参数的区间估计7.3 两个总体参数的区间估计两个总体参数的区间估计7.4 样本量的确定样本量的确定7-3作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)学习目标学习目标1.估计量
2、与估计值的概念估计量与估计值的概念2.点估计与区间估计的区别点估计与区间估计的区别3.评价估计量优良性的标准评价估计量优良性的标准4.一个总体参数的区间估计方法一个总体参数的区间估计方法5.两个总体参数的区间估计方法两个总体参数的区间估计方法6.样本量的确定方法样本量的确定方法7-4作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)7.1 参数估计的一般问题参数估计的一般问题7.1.1 估计量与估计值估计量与估计值7.1.2 点估计与区间估计点估计与区间估计7.1.3 评价估计量的标准评价估计量的标准7-5作者:贾俊平,中国人民大学统计学院统计学统计学STATI
3、STICS(第五版第五版)估计量与估计值估计量与估计值7-6作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.估计量:用于估计总体参数的随机变量n n如样本均值,样本比例如样本均值,样本比例,样本方差等样本方差等n n例如例如:样本均值就是总体均值样本均值就是总体均值 的一个估计量的一个估计量2.参数用 表示,估计量用 表示3.估计值:估计参数时计算出来的统计量的具体值n n如果样本均值如果样本均值 x x =80=80,则,则8080就是就是 的估计值的估计值估计量与估计值估计量与估计值(estimator&estimated value)7-7作者:贾俊
4、平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)点估计与区间估计点估计与区间估计7-8作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)点估计点估计(point estimate)1.用样本的估计量的某个取值直接作为总体参数的估计值 例例如如:用用样样本本均均值值直直接接作作为为总总体体均均值值的的估估计计;用用两个样本均值之差直接两个样本均值之差直接作为作为总体均值之差的估计总体均值之差的估计2.无法给出估计值接近总体参数程度的信息n n虽虽然然在在重重复复抽抽样样条条件件下下,点点估估计计的的均均值值可可望望等等于于总总体体真真值值,
5、但但由由于于样样本本是是随随机机的的,抽抽出出一一个个具具体体的样本得到的估计值很可能不同于总体真值的样本得到的估计值很可能不同于总体真值n n一一个个点点估估计计量量的的可可靠靠性性是是由由它它的的抽抽样样标标准准误误差差来来衡衡量量的的,这这表表明明一一个个具具体体的的点点估估计计值值无无法法给给出出估估计的可靠性的度量计的可靠性的度量 7-9作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)区间估计区间估计(interval estimate)1.1.在在点点估估计计的的基基础础上上,给给出出总总体体参参数数估估计计的的一一个个区区间间范范围,该区间由样本
6、统计量加减估计误差而得到围,该区间由样本统计量加减估计误差而得到2.2.根根据据样样本本统统计计量量的的抽抽样样分分布布能能够够对对样样本本统统计计量量与与总总体体参数的接近程度给出一个概率度量参数的接近程度给出一个概率度量n n比如,某班级平均分数在比如,某班级平均分数在75758585之间,置信水平是之间,置信水平是95%95%样本统计量样本统计量样本统计量样本统计量 (点估计点估计点估计点估计)置信区间置信区间置信区间置信区间置信下限置信下限置信下限置信下限置信上限置信上限置信上限置信上限7-10作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)区间估计的
7、图示区间估计的图示 x95%95%的样本的样本的样本的样本 -1.96-1.96 x x +1.96+1.96 x x99%99%的样本的样本的样本的样本 -2.58-2.58 x x +2.58+2.58 x x90%90%的样本的样本的样本的样本 -1.65-1.65 x x +1.65+1.65 x x7-11作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平 2.表示为(1-n n 为是总体参数未在区间内的比例3.常用的置信水平值有 99%,95%,90%n n相应的
8、相应的 为,置信水平置信水平(confidence level)7-12作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.由样本统计量所构造的总体参数的估计区间称为由样本统计量所构造的总体参数的估计区间称为置信区间置信区间2.统计学家在某种程度上确信这个区间会包含真正统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间的总体参数,所以给它取名为置信区间 3.用用一个具体的样本所构造的区间是一个特定的区一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包间,我们无法知道这个样本所产生的区间是否包含总体参数的
9、真值含总体参数的真值n n我们只能是希望这个区间是大量包含总体参数真值的我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个值的区间中的一个n n总体参数以一定的概率落在这一区间的表述是错误的总体参数以一定的概率落在这一区间的表述是错误的置信区间置信区间(confidence interval)7-13作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)置信区间置信区间(95%的置信区的置信区间间)重复构造出重复构造出重复构造出重复构造出 的的的的2020个个个个
10、置信区间置信区间置信区间置信区间 点估计值点估计值点估计值点估计值7-14作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)评价估计量的标准评价估计量的标准7-15作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)无偏性无偏性(unbiasedness)无偏性:无偏性:估计量抽样分布的数学期望等于被 估计的总体参数P P()B BA A无偏无偏无偏无偏无偏无偏有偏有偏有偏有偏有偏有偏7-16作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)有效性有效性(efficiency)有效性:有效性:对同一总
11、体参数的两个无偏点估计 量,有更小标准差的估计量更有效 AB 的抽样分布的抽样分布的抽样分布的抽样分布 的抽样分布的抽样分布的抽样分布的抽样分布P P()7-17作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)一致性一致性(consistency)一致性:一致性:随着样本量的增大,估计量的 值越来越接近被估计的总体参数AB较小的样本量较小的样本量较小的样本量较小的样本量较大的样本量较大的样本量较大的样本量较大的样本量P P()7-18作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)7.2 一个总体参数的区间估计一个总体参数的区
12、间估计7.2.1 总体均值的区间估计总体均值的区间估计7.2.2 总体比例的区间估计总体比例的区间估计7.2.3 总体方差的区间估计总体方差的区间估计7-19作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)一个总体参数的区间估计一个总体参数的区间估计7-20作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(正态总体、正态总体、已知,或非正态总体、大样本已知,或非正态总体、大样本)7-21作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均
13、值的区间估计(大样本大样本)1.1.假定条件假定条件n n总体服从正态分布总体服从正态分布,且方差且方差()已已知知n n如果不是正态分布,可由正态分布来近似如果不是正态分布,可由正态分布来近似(n n 30)30)2.使用正态分布统计量使用正态分布统计量 z z3.总体均值总体均值 在在1-1-置信水平下的置信水平下的置信区间为置信区间为7-22作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分析例题分析)【例例例例 】一一家家食食品品生生产产企企业业以以生生产产袋袋装装食食品品为为主主,为为对对食食品品质质量量进进
14、行行监监测测,企企业业质质检检部部门门经经常常要要进进行行抽抽检检,以以分分析析每每袋袋重重量量是是否否符符合合要要求求。现现从从某某天天生生产产的的一一批批食食品品中中随随机机抽抽取取了了2525袋袋,测测得得每每袋袋重重量量如如下下表表所所示示。已已知知产产品品重重量量的的分分布布服服从从正正态态分分布布,且且总总体体标标准准差差为为10g10g。试试估估计计该该批批产产品品平平均均重重量量的的置信区间,置信水平为置信区间,置信水平为95%95%7-23作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分析例题分析)
15、解解解解:已已知知 N N(,10102 2),n n=25,=25,1-1-=95%95%,z z/2/2。根根据据样样本本数数据据计计算算得得:。由由于于是是正正态态总总体体,且且方方差差已已知知。总总体体均均值值 在在1-1-置置信信水水平平下下的的置置信信区间为区间为该食品平均重量的置信区间为该食品平均重量的置信区间为7-24作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分析例题分析)【例例例例】一一家家保保险险公公司司收收集集到到由由3636个个投投保保人人组组成成的的随随机机样样本本,得得到到每每个个投投
16、保保人人的的年年龄龄(单单位位:周周岁岁)数数据据如下表。试建立投保人年龄如下表。试建立投保人年龄90%90%的置信区间的置信区间 7-25作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分析例题分析)解解解解:已已知知n n=36,=36,1-1-=90%90%,z z/2/2。根根据据样样本本数数据据计计算算得:得:,总体均值总体均值 在在1-1-置信水平下的置信区间为置信水平下的置信区间为投保人平均年龄的置信区间为岁岁投保人平均年龄的置信区间为岁岁7-26作者:贾俊平,中国人民大学统计学院统计学统计学STATIS
17、TICS(第五版第五版)总体均值的区间估计总体均值的区间估计(正态总体、正态总体、未知、小样本未知、小样本)7-27作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(小样本小样本)1.假定条件n n总体服从正态分布总体服从正态分布,但方差但方差()未知未知n n小样本小样本(n n 30)30)2.使用 t 分布统计量3.总体均值 在1-置信水平下的置信区间为7-28作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)t 分布分布 t t 分分布布是是类类似似正正态态分分布布的的一一种种对对称称
18、分分布布,它它通通常常要要比比正正态态分分布布平平坦坦和和分分散散。一一个个特特定定的的分分布布依依赖赖于于称称之之为为自自由由度度的的参参数数。随随着着自自由由度度的的增增大大,分分布布也也逐逐渐渐趋于正态分布趋于正态分布 x x xt t 分布与标准正态分布的比较分布与标准正态分布的比较t t 分布分布标准正态分布标准正态分布t t不同自由度的不同自由度的t t分布分布标准正态分布标准正态分布t t(dfdf=13)=13)t t(dfdf=5)=5)z z7-29作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分
19、析例题分析)【例例例例】已已知知某某种种灯灯泡泡的的寿寿命命服服从从正正态态分分布布,现现从从一一批批灯灯泡泡中中随随机机抽抽取取1616只只,测测得得其其使使用用寿寿命命(单单位位:h)h)如如下。建立该批灯泡平均使用寿命下。建立该批灯泡平均使用寿命95%95%的置信区间的置信区间7-30作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体均值的区间估计总体均值的区间估计(例题分析例题分析)解解解解:已知已知 N N(,2 2),n n=16,1-=16,1-=95%=95%,t t/2/2 根据样本数据计算得:根据样本数据计算得:,总体均值总体均值 在在1
20、-1-置信水平下的置信区间为置信水平下的置信区间为该种灯泡平均使用寿命的置信区间为该种灯泡平均使用寿命的置信区间为h hh h7-31作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体比例的区间估计总体比例的区间估计7-32作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体比例的区间估计总体比例的区间估计1.1.假定条件假定条件n n总体服从二项分布总体服从二项分布n n可以由正态分布来近似可以由正态分布来近似2.2.使用正态分布统计量使用正态分布统计量 z z3.3.3.总体比例总体比例总体比例 在在在1-1-1-置信水
21、平下置信水平下置信水平下的置信区间为的置信区间为的置信区间为7-33作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体比例的区间估计总体比例的区间估计(例题分析例题分析)【例例例例】某某城城市市想想要要估估计计下下岗岗职职工工中中女女性性所所占占的的比比例例,随随机机地地抽抽取取了了100100名名下下岗岗职职工工,其其中中6565人人为为女女性性职职工工。试试以以95%95%的的置置信信水水平平估估计计该该城城市市下下岗岗职职工工中中女女性性比比例例的置信区间的置信区间解解解解:已已知知 n n=100=100,p p65%65%,1 1-=95%95%,
22、z z/2/2该该城城市市下下岗岗职职工工中中女女性性比比例例的的置置信信区间为区间为55.65%74.35%55.65%74.35%7-34作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体方差的区间估计总体方差的区间估计7-35作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体方差的区间估计总体方差的区间估计1.估计一个总体的方差或标准差2.假设总体服从正态分布3.总体方差 2 2 的点估计量为s2 2,且4.总体方差在1-置信水平下的置信区间为7-36作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS
23、(第五版第五版)总体方差的区间估计总体方差的区间估计(图示图示)1-1-1-1-总体方差的总体方差的总体方差的1-1-1-的置信区间的置信区间的置信区间自由度为自由度为自由度为自由度为n n-1-1的的的的 7-37作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体方差的区间估计总体方差的区间估计(例题分析例题分析)【例例例例】一一家家食食品品生生产产企企业业以以生生产产袋袋装装食食品品为为主主,现现从从某某天天生生产产的的一一批批食食品品中中随随机机抽抽取取了了2525袋袋,测测得得每每袋袋重重量量如如下下表表所所示示。已已知知产产品品重重量量的的分分布布
24、服服从从正正态态分分布布。以以95%95%的置信水平建立该种食品重量方差的置信区间的置信水平建立该种食品重量方差的置信区间 7-38作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)总体方差的区间估计总体方差的区间估计(例题分析例题分析)解解解解:已知已知n n2525,1-1-95%,95%,根据样本数据计算得根据样本数据计算得 s s2 2 2 2置信度为置信度为95%95%的置信区间为的置信区间为 该企业生产的食品总体重量标准差的的置信区该企业生产的食品总体重量标准差的的置信区间为间为7-39作者:贾俊平,中国人民大学统计学院统计学统计学STATISTIC
25、S(第五版第五版)一个总体参数的区间估计一个总体参数的区间估计(小结小结)待估参数待估参数待估参数待估参数均值均值比例比例方差方差大样本大样本小样本小样本大样本大样本 2 2分布分布 2 2已知已知 2 2已知已知Z Z分布分布 2 2未知未知Z Z分布分布Z Z分布分布Z Z分布分布 2 2未知未知t t分布分布7-40作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)7.3 两个总体参数的区间估计两个总体参数的区间估计7.3.1 两个总体均值之差的区间估计两个总体均值之差的区间估计7.3.2 两个总体比例之差的区间估计两个总体比例之差的区间估计7.3.3 两
26、个总体方差比的区间估计两个总体方差比的区间估计7-41作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体参数的区间估计两个总体参数的区间估计7-42作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的区间估计两个总体均值之差的区间估计(独立大样本独立大样本)7-43作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(大样本大样本)1.假定条件 两个两个总体都服从正态分布,总体都服从正态分布,1 1、2 2已知已知 若若不不是是正正态
27、态分分布布,可可以以用用正正态态分分布布来来近近似似(n n1 1 3030和和n n2 2 30)30)两个样本是独立的随机样本两个样本是独立的随机样本2.使用正态分布统计量 z7-44作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(大样本大样本)1.1.1 1,2 2已已知知时时,两两个个总总体体均均值值之之差差 1 1-2 2在在1-1-置信水平下的置信区间为置信水平下的置信区间为2.1 1、2 2未知时,未知时,两个总体均值之差两个总体均值之差 1 1-2 2在在1-1-置信水平下的置信区间为置信水平下的置
28、信区间为7-45作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)【例例】某地区教育管理部门想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立抽取两个随机样本,有关数据如右表。建立两所中学高考英语平均分数之差95%的置信区间 7-46作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)解解解解:两两个个总总体体均均值值之之差差在在1-1-置置信信水水平平下下的的置置信信区区间间为为 两所中学高
29、考英语平均分数之差的置信区间为两所中学高考英语平均分数之差的置信区间为分分分分7-47作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的区间估计两个总体均值之差的区间估计(独立小样本独立小样本)7-48作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(小样本小样本:1 1=)1.1.假定条件假定条件 两个两个总体都服从正态分布总体都服从正态分布 两个总体方差未知但相等:两个总体方差未知但相等:1 1=2 2 两个独立的小样本两个独立的小样本(n n1 1 3030和和
30、n n2 2 30)30)2.2.总体方差的合并估计量总体方差的合并估计量3.3.估计估计量量 x x1 1-x x2 2的抽样标准差的抽样标准差7-49作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(小样本小样本:1 1=)1.两个样本均值之差的标准化2.两个总体均值之差1-2在1-置信水平下的置信区间为7-50作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)【例例例例】为为估估计计两两种种方方法法组组装装产产品品所
31、所需需时时间间的的差差异异,分分别别对对两两种种不不同同的的组组装装方方法法各各随随机机安安排排1212名名工工人人,每每个个工工人人组组装装一一件件产产品品所所需需的的时时间间(单单位位:min)min)下下如如表表。假假定定两两种种方方法法组组装装产产品品的的时时间间服服从从正正态态分分布布,且且方方差差相相等等。试试以以95%95%的的置置信信水水平平建建立立两两种种方方法法组组装装产产品品所所需平均时间差值的置信区间需平均时间差值的置信区间7-51作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题
32、分析)解解解解:根据样本数据计算得根据样本数据计算得 合并估计量为合并估计量为两种方法组装产品所需平均时间之差的置信区间为两种方法组装产品所需平均时间之差的置信区间为7-52作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(小样本小样本:1 1 )1.1.假定条件假定条件 两个两个总体都服从正态分布总体都服从正态分布 两个总体方差未知且不相等:两个总体方差未知且不相等:1 1 2 2 两个独立的小样本两个独立的小样本(n n1 1 3030和和n n2 2 30)30)2.使用统计量使用统计量7-53作者:贾俊平,中
33、国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(小样本小样本:1 1 )两个总体均值之差1-2在1-置信水平下的置信区间为自由度自由度7-54作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)【例例例例】沿沿用用前前例例。假假定定第第一一种种方方法法随随机机安安排排1212名名工工人人,第第二二种种方方法法随随机机安安排排8 8名名工工人人,即即n n1 1=12=12,n n2 2=8=8,所所得得的的有有关关数数据据如如表表。假假定
34、定两两种种方方法法组组装装产产品品的的时时间间服服从从正正态态分分布布,且且方方差差不不相相等等。以以95%95%的置信水平建立两种方法组装产品所需平均时间差值的置信区间的置信水平建立两种方法组装产品所需平均时间差值的置信区间 7-55作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)解解解解:根据样本数据计算得根据样本数据计算得 自由度为自由度为两种方法组装产品所需平均时间之差的置信区间为两种方法组装产品所需平均时间之差的置信区间为7-56作者:贾俊平,中国人民大学统计学院统计学统计学STATIS
35、TICS(第五版第五版)两个总体均值之差的区间估计两个总体均值之差的区间估计(匹配样本匹配样本)7-57作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(匹配大样本匹配大样本)1.假定条件两个匹配的大样本两个匹配的大样本(n n1 1 3030和和n n2 2 30)30)两个总体各观察值的配对差服从正态分布两个总体各观察值的配对差服从正态分布2.两个总体均值之差d=1-2在1-置信水平下的置信区间为对应差值的均值对应差值的均值对应差值的标准差对应差值的标准差7-58作者:贾俊平,中国人民大学统计学院统计学统计学ST
36、ATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(匹配小样本匹配小样本)1.假定条件两个匹配的小样本两个匹配的小样本(n n1 1 3030和和n n2 2 30)30)两个总体各观察值的配对差服从正态分布两个总体各观察值的配对差服从正态分布 2.两个总体均值之差d=1-2在1-置信水平下的置信区间为7-59作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)【例例例例】由由 1010名名学学 生生 组组 成成 一一 个个随随 机机 样样 本本,让让他他们们分分别别采采用用
37、A A和和B B两两套套试试卷卷进进行行 测测 试试,结结 果果如如下下表表 。试试建建立立 两两 种种 试试 卷卷 分分数数 之之 差差 d d=1 1-2 2 95%95%的的置置信信区间区间7-60作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体均值之差的估计两个总体均值之差的估计(例题分析例题分析)解解解解:根据样本数据计算得根据样本数据计算得两种试卷所产生的分数之差的置信区间为分两种试卷所产生的分数之差的置信区间为分分分7-61作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体比例之差区间的估计两个总体
38、比例之差区间的估计7-62作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.假定条件 两个两个总体服从二项分布总体服从二项分布 可以用正态分布来近似可以用正态分布来近似 两个样本是独立的两个样本是独立的2.两个总体比例之差1-2在1-置信水平下的置信区间为两个总体比例之差的区间估计两个总体比例之差的区间估计7-63作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体比例之差的估计两个总体比例之差的估计(例题分析例题分析)【例例】在某个电视节目的收视率调查中,农村随机调查了400人,有32%的人收看了该节目;城市随机调查了
39、500人,有45%的人收看了该节目。试以95%的置信水平估计城市与农村收视率差别的置信区间 1 12 27-64作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体比例之差的估计两个总体比例之差的估计(例题分析例题分析)解解解解:已知已知 n n1 1=500=500,n n2 2=400=400,p p1 1=45%=45%,p p2 2=32%=32%,1-1-=95%=95%,z z/2/2 1 1-2 2置信度为置信度为95%95%的置信区间为的置信区间为城城 市市 与与 农农 村村 收收 视视 率率 差差 值值 的的 置置 信信 区区 间间 为为
40、6.68%19.32%6.68%19.32%7-65作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体方差比的区间估计两个总体方差比的区间估计7-66作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体方差比的区间估计两个总体方差比的区间估计1.1.比较两个总体的方差比比较两个总体的方差比2.用用两个样本的方差比来判断两个样本的方差比来判断 如果如果S S1 12 2/S S2 22 2接近于接近于1 1,说明两个总体方差很接近说明两个总体方差很接近 如果如果S S1 12 2/S S2 22 2远离远离1 1,说明
41、两个总体方差之间存在差异说明两个总体方差之间存在差异3.总体方差比在总体方差比在1-1-置信水平下的置信区间为置信水平下的置信区间为7-67作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体方差比的区间估计两个总体方差比的区间估计(图示图示)F FF F1-1-1-1-F F 总体方差比的总体方差比的总体方差比的1-1-1-的置信区间的置信区间的置信区间方差比置信区间示意图方差比置信区间示意图方差比置信区间示意图方差比置信区间示意图7-68作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体方差比的区间估计两个总体方
42、差比的区间估计(例题分析例题分析)【例例】为了研究男女学生在生活费支出(单位:元)上的差异,在某大学各随机抽取25名男学生和25名女学生,得到下面的结果 男学生:女学生:试以90%置信水平估计男女学生生活费支出方差比的置信区间 7-69作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体方差比的区间估计两个总体方差比的区间估计(例题分析例题分析)解解解解:根根据据自自由由度度 n n1 1=25-1=24=25-1=24,n n2 2=25-1=24=25-1=24,查查得得 F F/2/2,F F1-1-/2/2 1 12 2/2 22 2置信度为置信度
43、为90%90%的置信区间为的置信区间为男女学生生活费支出方差比的置信区间为男女学生生活费支出方差比的置信区间为 7-70作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)两个总体参数的区间估计两个总体参数的区间估计(小结小结)待估参数待估参数待估参数待估参数均值差均值差比例差比例差方差比方差比独立大样本独立大样本独立小样本独立小样本匹配样本匹配样本独立大样本独立大样本 1 12 2、2 22 2已已 1 12 2、2 22 2未未Z Z分布分布Z Z分布分布 1 12 2、2 22 2已知已知 1 12 2、2 22 2未知未知Z Z分布分布 1 12 2=2
44、22 2 1 12 2 2 22 2正态总体正态总体F F分布分布Z Z分布分布t t分布分布t t分布分布t分布分布7-71作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)7.4 样本量的确定样本量的确定7.4.1 估计总体均值时样本量的确定估计总体均值时样本量的确定7.4.2 估计总体比例时样本量的确定估计总体比例时样本量的确定7.4.3 估计两个总体均值之差时样本量的确定估计两个总体均值之差时样本量的确定7.4.4 估计两个总体比例之差时样本量的确定估计两个总体比例之差时样本量的确定7-72作者:贾俊平,中国人民大学统计学院统计学统计学STATISTIC
45、S(第五版第五版)估计总体均值时样本量的确定估计总体均值时样本量的确定7-73作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.估计总体均值时样本量n为2.2.样样本本量量n n与与总总体体方方差差 2 2、估估计计误误差差E E、可可靠靠性性系系数数Z Z或或t t之间的关系为之间的关系为 与总体方差成正比与总体方差成正比 与估计误差的平方成反比与估计误差的平方成反比 与可靠性系数成正比与可靠性系数成正比3.样样本本量量的的圆圆整整法法则则:当当计计算算出出的的样样本本量量不不是是整整数数时时,将将小小数数点点后后面面的的数数值值一一律律进进位位成成整整数
46、数,如如取取2525,也取也取2525等等等等估计总体均值时样本量的确定估计总体均值时样本量的确定 其中:其中:7-74作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)估计总体均值时样本量的确定估计总体均值时样本量的确定(例题分析例题分析)【例例】拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计年薪95%的置信区间,希望估计误差为400元,应抽取多大的样本量?7-75作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)估计总体均值时样本量的确定估计总体均值时样本量的确定 (例题分析例题分析)解解解解:已知
47、已知 =2000=2000,E E=400,=400,1-1-=95%=95%,z z/2/2 应抽取的样本量为应抽取的样本量为即应抽取即应抽取9797人作为样本人作为样本 7-76作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)估计总体比例时样本量的确定估计总体比例时样本量的确定7-77作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)1.根据比例区间估计公式可得样本量n为估计总体比例时样本量的确定估计总体比例时样本量的确定 2.E的取值一般小于3.未知时,可取使方差达到最大的值其中:其中:其中:7-78作者:贾俊平,中国人民
48、大学统计学院统计学统计学STATISTICS(第五版第五版)估计总体比例时样本量的确定估计总体比例时样本量的确定(例题分析例题分析)【例例例例】根根据据以以往往的的生生产产统统计计,某某种种产产品品的的合合格格率率约约为为90%90%,现现要要求求 估估 计计 误误 差差 为为5%5%,在在 求求 95%95%的的置置信信区区间间时时,应应抽抽取取多多少少个个产产品作为样本?品作为样本?解解解解:已已 知知=90%=90%,z z/2/2,E E=5%=5%应抽取的样本量应抽取的样本量为为 应抽取应抽取139139个产品作为样本个产品作为样本7-79作者:贾俊平,中国人民大学统计学院统计学统计学STATISTICS(第五版第五版)本章小结本章小结1.参数估计的一般问题参数估计的一般问题2.一个总体参数的区间估计一个总体参数的区间估计3.两个总体参数的区间估计两个总体参数的区间估计4.样本量的确定样本量的确定结结 束束