《基本体与曲面的投影.ppt》由会员分享,可在线阅读,更多相关《基本体与曲面的投影.ppt(114页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章 基本体与曲面的投影表面都是平面的立体称为平面立体:表面都是平面的立体称为平面立体:如棱柱和棱锥如棱柱和棱锥表面是曲面或曲面和平面的立体,称表面是曲面或曲面和平面的立体,称为曲面立体:如球、圆柱、圆锥(主要为曲面立体:如球、圆柱、圆锥(主要讲回转体)讲回转体)视图特征:视图特征:1)1)反映底面实形的视图为反映底面实形的视图为多边形多边形;2)2)另两视图均为由实线或另两视图均为由实线或虚线组成的虚线组成的矩形矩形。棱柱棱柱 直棱柱侧棱与底面垂直。斜棱柱侧棱与底面倾斜。正棱柱正棱柱底面为正多边底面为正多边形的直棱柱。形的直棱柱。3 1 平面体的投影及其表面上的点与线平面体的投影及其表面上
2、的点与线正六棱柱三面投影图六棱柱的投影图六棱柱的投影图棱柱表面上的点棱柱表面上的点棱柱表面上的点棱柱表面上的点4 4种工程形体的投影种工程形体的投影视图特征:视图特征:1)1)反映底面实形的视图反映底面实形的视图为为多边形(三角形的组多边形(三角形的组合图形)合图形);2)2)另两视图均为另两视图均为三角形三角形。棱锥棱锥正棱锥正棱锥底面为正底面为正多边形,顶点过底面多边形,顶点过底面中心垂线的棱锥体。中心垂线的棱锥体。(b)saBascbccsbCASa三棱锥的投影图三棱锥的投影图棱锥的投影棱锥的投影棱锥表面上的点棱锥表面上的点辅助线法棱锥表面上的点棱锥表面上的点视图特征:视图特征:1)1)
3、反映底面实形的视图为反映底面实形的视图为两个相似多边形两个相似多边形和反映侧面的和反映侧面的几个梯形几个梯形;2)2)另两视图均为另两视图均为梯形梯形(或梯形的组合图形或梯形的组合图形)。棱台棱台棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形成的形体,上、下底面为各对应边相互平行的相似多边形,成的形体,上、下底面为各对应边相互平行的相似多边形,侧面为梯形。侧面为梯形。3.3 求立体表面上点、线的投影求立体表面上点、线的投影 1 1、位于棱线或边线上的点、位于棱线或边线上的点(线上定点法线上定点法)当点位于立体表面的某条棱线或边线上时,可利用
4、线上点的“从属性”直接在线的投影上定点,这种方法即为线上定点法,亦可称为从属性法。2.2.位于特殊位置平面上的点位于特殊位置平面上的点(积聚性法积聚性法)当点位于立体表面的特殊位置平面上时,可利用该平面的积聚性,直接求得点的另外两个投影,这种方法称为积聚性法。3.3.位于一般位置平面上的点位于一般位置平面上的点(辅助线法辅助线法)当点位于立体表面的一般位置平面上时,因所在平面无积聚性,不能直接求得点的投影,而必须先在一般位置平面上做辅助线(辅助线可以是一般位置直线或特殊位置直线),求出辅助线的投影,然后再在其上定点,这种方法称为辅助线法。平面立体上点和直线的投影平面立体上点和直线的投影【例【例
5、3.13.1】如图所示,】如图所示,M M、N N分别是立体表面上的两个点。已知分别是立体表面上的两个点。已知M M点点的正面投影的正面投影mm、N N点的水平投影点的水平投影n n,试求点,试求点M M、N N的另外两面投影。的另外两面投影。【例【例3.23.2】如图所示,已知立体表面上直线】如图所示,已知立体表面上直线MKMK的正面投影的正面投影mkmk,试,试作直线作直线MKMK的水平投影的水平投影mkmk和侧面投影和侧面投影mkmk。(a)已知条件 (b)作图方法【例【例3.33.3】如图所示,已知立体表面点】如图所示,已知立体表面点K K的正面投影的正面投影kk,试求其水,试求其水平
6、与侧面投影平与侧面投影k k、kk。(a)已知条件 (b)一般位置直线作为辅助线 (c)特殊位置直线作为辅助线 求k点的投影 求k点的投影3.3 求立体表面上点、线的投影求立体表面上点、线的投影 1.1.线上定点法线上定点法(从属性法从属性法)当点或线位于曲面立体的轮廓素线上时,可利用“线上定点(从属性)法”求解。2.2.积聚性法积聚性法 当点或线所在的立体表面有积聚性时,可利用“积聚性法”求解。3.3.辅助素线或辅助纬圆法辅助素线或辅助纬圆法 当点或线所在的曲面立体表面无积聚性时,则必须利用“辅助线法”求解,如位于圆锥(圆台)的锥面上的点或线,可利用辅助素线或辅助纬圆法;而位于圆球的球面上的
7、点或线可利用辅助纬圆法。3.3.2 曲面立体上点和直线的投影曲面立体上点和直线的投影【例【例3.43.4】如图所示,已知立体表面上的点】如图所示,已知立体表面上的点K K的正面投影的正面投影kk,求其,求其另外两面的投影另外两面的投影k k、kk。(a)已知条件 (b)作图方法【例【例3.53.5】如图所示,已知圆柱表面上线段】如图所示,已知圆柱表面上线段ABAB的正面投影的正面投影abab,求,求其另外两面上的投影。其另外两面上的投影。(a)已知条件 (b)作图方法【例【例3.63.6】如图所示,已知圆锥上点】如图所示,已知圆锥上点K K的正面投影的正面投影kk,求其另两面,求其另两面上的投
8、影。上的投影。(a)已知条件 (b)作图方法u 常见的曲面体多是回转体,如圆柱、圆锥、圆球、圆环等。常见的曲面体多是回转体,如圆柱、圆锥、圆球、圆环等。回转面 有一条母线(直线或曲线)绕固定轴线 回转而成的曲面。素 线 在回转面上每一个位置的母线。回转体 由回转面或回转面与平面所围成的体。32 曲面立体的投影曲面立体的投影:所有表面的投影,也就是曲面立体的投影:所有表面的投影,也就是曲面立体的轮廓线、尖点的投影以及曲面立体曲面立体的轮廓线、尖点的投影以及曲面立体的转向轮廓线。的转向轮廓线。转向轮廓线:常常是曲面的可见投影与不可转向轮廓线:常常是曲面的可见投影与不可见投影的分界线见投影的分界线母
9、线:某些曲面可看作一条线按一定规律运母线:某些曲面可看作一条线按一定规律运动所形成,这条线称为母线,曲面上任一位置动所形成,这条线称为母线,曲面上任一位置的母线称为素线的母线称为素线。回转体:母线绕轴旋转,形成回转面。由回回转体:母线绕轴旋转,形成回转面。由回转面或回转面与平面所围成的立体为回转体。转面或回转面与平面所围成的立体为回转体。32 曲面立体的投影一.圆柱的投影:圆柱由圆柱面和两个底面所围成。圆柱可看作是由一个矩形平面绕着它的一条边回转而成。圆柱面可看作由直线绕与它相平行的轴线旋转而成。圆柱圆柱视图特征:视图特征:1 1)反映底面实)反映底面实形的视图为形的视图为圆圆;2 2)另两视
10、图均为)另两视图均为矩形矩形。分析圆柱轮廓素线的投影轮廓素线轮廓素线构成圆柱面构成圆柱面投影的轮廓线投影的轮廓线(对某投影面的(对某投影面的可见与不可见部可见与不可见部分的分界线)分的分界线)(回转面上外形(回转面上外形轮廓线)。轮廓线)。1.圆柱的投影圆柱的投影圆柱的投影圆柱的投影2.圆柱表面上的点圆柱表面上的点圆柱表面上的点圆柱表面上的点例 求回转体表面上的点与线()()(1)(1)作圆柱左视图作圆柱左视图作圆柱左视图作圆柱左视图(2)(2)作特殊点作特殊点作特殊点作特殊点A A(3)(3)作一般点作一般点作一般点作一般点B B(4)(4)作一般点作一般点作一般点作一般点CDCD 圆锥可看
11、作是由一个直角三角形绕其直角边回转而成。圆锥由圆锥面、底面所围成。圆锥面可看作由直线绕与它相交的轴线旋转而成。圆锥圆锥视图特征:视图特征:1 1)反映底面实形)反映底面实形的视图为的视图为圆圆;2 2)另两视图均为)另两视图均为等腰三角形等腰三角形。圆锥的投影圆锥的投影圆锥的投影圆锥的投影圆锥的投影圆锥表面上的点圆锥表面上的点圆锥表面上的点圆锥表面上的点圆锥表面上的点求解过程已知条件()(1)(1)作圆锥左视图作圆锥左视图作圆锥左视图作圆锥左视图(2)(2)作特殊点作特殊点作特殊点作特殊点A A(3)(3)作一般点作一般点作一般点作一般点B(B(用辅助平面法)用辅助平面法)用辅助平面法)用辅助
12、平面法)(4)(4)作一般点作一般点作一般点作一般点B B(用素线法)(用素线法)(用素线法)(用素线法)辅助平面辅助平面辅助平面辅助平面辅助素线辅助素线辅助素线辅助素线例 圆锥表面上点的求法圆台圆台 圆锥被垂直于轴线的平面截去锥顶部分,剩余部分称为圆台,其上下底面为半径不同的圆面,视图特征:视图特征:1 1)与轴线垂直的)与轴线垂直的投影面上的投影投影面上的投影为为两个同心圆两个同心圆;2 2)另两视图均为)另两视图均为等腰梯形等腰梯形。三.圆球的投影圆球的投影圆球的投影圆球的投影圆球的投影圆球表面上的点圆球表面上的点圆球表面上的点圆球表面上的点(1)(1)作球体左视图作球体左视图作球体左视
13、图作球体左视图(2)(2)作特殊点作特殊点作特殊点作特殊点A A、B B(3)(3)作一般点作一般点作一般点作一般点C(C(用辅助平面法)用辅助平面法)用辅助平面法)用辅助平面法)(4)(4)判别可见性、光滑连线判别可见性、光滑连线判别可见性、光滑连线判别可见性、光滑连线辅助平面辅助平面辅助平面辅助平面求解过程已知条件例 圆球表面上的点练习1练习2练习3练习4练习533 曲面的投影一、曲面的形成和分类一、曲面的形成和分类一、曲面的形成和分类一、曲面的形成和分类 曲面分为规则曲面和不规则曲面。规则曲面可以看曲面分为规则曲面和不规则曲面。规则曲面可以看成是运动的线按照一定的规则或受某种控制运动的轨
14、迹。成是运动的线按照一定的规则或受某种控制运动的轨迹。运动的线称为母线,曲面上任意位置的母线称为素线。运动的线称为母线,曲面上任意位置的母线称为素线。控制母线运动的线或面,称为导线或导面。控制母线运动的线或面,称为导线或导面。由直母线运动生成的曲面称为直纹面,例由直母线运动生成的曲面称为直纹面,例如圆柱面、圆锥面;只能由曲母线运动生成的如圆柱面、圆锥面;只能由曲母线运动生成的曲面称为曲线面,例如球面。曲面称为曲线面,例如球面。曲面的形成和分类 根据母线运动时有无旋转轴,曲面可以分为旋根据母线运动时有无旋转轴,曲面可以分为旋转面和非旋转面。在旋转面中,由直母线旋转生转面和非旋转面。在旋转面中,由
15、直母线旋转生成的叫旋转直纹面,由曲母线旋转生成的叫旋转成的叫旋转直纹面,由曲母线旋转生成的叫旋转曲线面。曲线面。平行于某个投射方向而且与曲面相切的投射线,形平行于某个投射方向而且与曲面相切的投射线,形成投射平面或柱面,它们与曲面相切的切线称为该投射成投射平面或柱面,它们与曲面相切的切线称为该投射方向的曲面外形轮廓线,简称外形线。曲面在某个投影方向的曲面外形轮廓线,简称外形线。曲面在某个投影面上的投影,可以用该投射方向上外形线的投影来表示。面上的投影,可以用该投射方向上外形线的投影来表示。此外,有时还需同时画出曲面上若干条素线。此外,有时还需同时画出曲面上若干条素线。曲面的投影 曲面的投影 外形
16、线同时还是曲面在该投射方向下可见与外形线同时还是曲面在该投射方向下可见与不可见部分的分界线。不可见部分的分界线。曲面上点的投影在曲面的同面投影上。曲面上点的投影在曲面的同面投影上。这里讨论的问题是,已知曲面的投影,根据这里讨论的问题是,已知曲面的投影,根据曲面上点的一个投影如何求出它的其余投影。曲面上点的一个投影如何求出它的其余投影。与平面上定点类似,这里也要借助于辅助线与平面上定点类似,这里也要借助于辅助线。曲面上选用的辅助线,其投影应为直线或圆。曲面上选用的辅助线,其投影应为直线或圆。对于直纹面,可选用其直的素线为辅助线,用对于直纹面,可选用其直的素线为辅助线,用这种方法求点的投影称为素线
17、法。这种方法求点的投影称为素线法。对于旋转面可以选用纬圆作为辅助线,用这对于旋转面可以选用纬圆作为辅助线,用这种方法求点的投影称为纬圆法种方法求点的投影称为纬圆法。在圆锥面上用素线法和纬圆法求点的投影的在圆锥面上用素线法和纬圆法求点的投影的例子:例子:直纹面分为旋转直纹面和非旋转直纹面。圆柱面、直纹面分为旋转直纹面和非旋转直纹面。圆柱面、圆锥面、旋转单叶双曲面等属于旋转直纹面,切线面、圆锥面、旋转单叶双曲面等属于旋转直纹面,切线面、双曲抛物面、锥状面、柱状面等属于非旋转直纹面。双曲抛物面、锥状面、柱状面等属于非旋转直纹面。二 直纹面1、柱面 直母线直母线l l 沿着沿着一条导曲线运动,一条导曲
18、线运动,且始终平行于某一且始终平行于某一固定方向固定方向T T,这样形,这样形成的曲面称为柱面。成的曲面称为柱面。柱面的所有素线均柱面的所有素线均互相平行,画柱面互相平行,画柱面的投影时需画出外的投影时需画出外形线的投影(轮廓形线的投影(轮廓素线)。素线)。在柱面上求点的投影,一般可用素线法。在柱面上求点的投影,一般可用素线法。柱面的曲导线一般为平面曲线。柱面是按正截面柱面的曲导线一般为平面曲线。柱面是按正截面的形状取名的,正截面是圆时,称为圆柱面;正截面的形状取名的,正截面是圆时,称为圆柱面;正截面是椭圆时,称为椭圆柱面,等等。是椭圆时,称为椭圆柱面,等等。如果柱面有两个以上的对称平面,则对
19、称平面的如果柱面有两个以上的对称平面,则对称平面的交线称为柱面的轴。下面是几种有轴柱面的投影。交线称为柱面的轴。下面是几种有轴柱面的投影。续2 2 2 2、锥面、锥面、锥面、锥面 直母线沿着一条曲导线直母线沿着一条曲导线C C 运动,且始终通过定点运动,且始终通过定点S S,这样形成的曲面称为锥面。,这样形成的曲面称为锥面。S S 称为锥顶,所有的素称为锥顶,所有的素线都通过它。在投影图上,应画出锥顶、导曲线和锥线都通过它。在投影图上,应画出锥顶、导曲线和锥面外形线的投影。面外形线的投影。在锥面上作点,一般利用素线法。当用投影面在锥面上作点,一般利用素线法。当用投影面平行面能截出圆形交线时,也
20、可以用纬圆法作点。平行面能截出圆形交线时,也可以用纬圆法作点。下面是几种有轴的锥面。下面是几种有轴的锥面。续3、切线面 直母线直母线l l 沿着一条曲沿着一条曲导线导线C C 运动,且始终与运动,且始终与C C 相切,这样形成的曲面相切,这样形成的曲面称为切线面。曲导线称为切线面。曲导线C C 是空间曲线,称为切线是空间曲线,称为切线面的脊线面的脊线。工程中弯曲坡道两侧的工程中弯曲坡道两侧的边坡往往设计成切线面,并边坡往往设计成切线面,并且使切线面的所有切线与地且使切线面的所有切线与地面成同一角度,这样设计成面成同一角度,这样设计成的切线面称为同坡曲面。的切线面称为同坡曲面。续 直母线直母线l
21、 l 沿着两条交叉直导线沿着两条交叉直导线ABAB、CDCD运动,且始终平行运动,且始终平行于某一导平面于某一导平面Q Q,这样形成的曲面称为双曲抛物面,工程上,这样形成的曲面称为双曲抛物面,工程上也称扭面。也称扭面。双曲抛物面的投影图中,只需画出两条直导线和若干双曲抛物面的投影图中,只需画出两条直导线和若干素线的投影,而不必画出导平面。素线的投影,而不必画出导平面。4、双曲抛物面水渠边坡渐变段水渠边坡渐变段道路边坡过渡段道路边坡过渡段双曲抛物面在工程上有广泛的用途。双曲抛物面在工程上有广泛的用途。对于同一个双曲抛物面,也可以把它看作是以对于同一个双曲抛物面,也可以把它看作是以ADAD、BCB
22、C为交叉直导线,以平行于端点连线为交叉直导线,以平行于端点连线ABAB、CD CD 的平面的平面P P 为导平面所形成的。也就是说,双曲抛物面上有两族为导平面所形成的。也就是说,双曲抛物面上有两族素线,其中每一条素线与同族的所有素线都不相交,素线,其中每一条素线与同族的所有素线都不相交,而与另一族的所有素线都相交。而与另一族的所有素线都相交。续 直母线直母线l l 沿着一条直导线沿着一条直导线EF EF 和一条曲导线和一条曲导线ABC ABC 运动,运动,且始终平行于导平面且始终平行于导平面P P(P P 平行于两条导线端点的连线平行于两条导线端点的连线AE AE 和和CF CF),这样形成的
23、曲面称为锥状面。),这样形成的曲面称为锥状面。5、锥状面 直母线直母线l l 沿着两条曲导线运动,且始终平行于某一沿着两条曲导线运动,且始终平行于某一导平面,这样形成的曲面称为柱状面。导平面,这样形成的曲面称为柱状面。柱状面桥墩柱状面桥墩柱状面管道柱状面管道 6、柱状面 柱状面的所有素线都平行于导平面,而彼此间则成柱状面的所有素线都平行于导平面,而彼此间则成交叉状态。投影图上只需表示两条导线和若干条素线的交叉状态。投影图上只需表示两条导线和若干条素线的投影,而不画出导平面。投影,而不画出导平面。以正平面为导平面以正平面为导平面的柱状面管道的柱状面管道 直母线绕一条与它交叉的直线直母线绕一条与它
24、交叉的直线OOOO旋转,这样形成旋转,这样形成的曲面称为旋转单叶双曲面,直线的曲面称为旋转单叶双曲面,直线OOOO称为旋转轴。称为旋转轴。7、旋转单叶双曲面 投影图上应画出旋转轴和若干条素线的投影、投影图上应画出旋转轴和若干条素线的投影、直母线两端点轨迹的投影,以及素线的包络线。直母线两端点轨迹的投影,以及素线的包络线。旋转中母线上的每个点都在作圆周运动,其轨旋转中母线上的每个点都在作圆周运动,其轨迹是纬圆。母线上距轴线最近的点,其轨迹是最小迹是纬圆。母线上距轴线最近的点,其轨迹是最小的纬圆,叫喉圆。的纬圆,叫喉圆。过旋转单叶双曲面上的每个点,还可以画出另过旋转单叶双曲面上的每个点,还可以画出
25、另外一条素线,也就是说,同一个旋转单叶双曲面上外一条素线,也就是说,同一个旋转单叶双曲面上存在着两族素线,同族的素线间均不相交,而每一存在着两族素线,同族的素线间均不相交,而每一条素线都与另一族的所有素线相交。条素线都与另一族的所有素线相交。续 分别以圆柱螺旋线和其轴线为导线,直母线分别以圆柱螺旋线和其轴线为导线,直母线l l 沿沿此两导线移动而又同时与轴线保持一定的角度,这样此两导线移动而又同时与轴线保持一定的角度,这样形成的曲面称为螺旋面。若母线与轴正交,得到的叫形成的曲面称为螺旋面。若母线与轴正交,得到的叫正螺旋面,否则得到的叫斜螺旋面。正螺旋面,否则得到的叫斜螺旋面。8、螺旋面 投影图
26、投影图直观图直观图正螺旋面应用实例:螺旋楼梯的作图 塔柱上的螺旋楼梯塔柱上的螺旋楼梯 在作出螺旋线的正面投影的基础上,在作出螺旋线的正面投影的基础上,首先作一条平行于首先作一条平行于V V 面的素线,使其与面的素线,使其与轴的夹角等于定角轴的夹角等于定角,如图中的,如图中的001001。自自0101起向上量取导程并按水平投影的起向上量取导程并按水平投影的等分数将其等分,过各分点与螺旋线正等分数将其等分,过各分点与螺旋线正面投影上相应点面投影上相应点00、11、1212连连接,即得螺旋面的素线的正面投影,最接,即得螺旋面的素线的正面投影,最后画出素线的包络线,完成螺旋面的正后画出素线的包络线,完
27、成螺旋面的正面投影面投影。斜螺旋面斜螺旋面斜螺旋面斜螺旋面三、曲线面 1、球面 圆绕其任一直径旋转生成球面。所以球面被任一圆绕其任一直径旋转生成球面。所以球面被任一平面截割,其交线均为圆。球的任一正投影也总是圆。平面截割,其交线均为圆。球的任一正投影也总是圆。圆的直径等于球的直径。圆的直径等于球的直径。在球面上作点,一般用纬圆法。例如已知球上点在球面上作点,一般用纬圆法。例如已知球上点A A的正面投影的正面投影a,a,过过aa作水平纬圆的正面投影,得纬作水平纬圆的正面投影,得纬圆半径圆半径rara,在水平投影中以,在水平投影中以rara为半径画圆,得纬圆的为半径画圆,得纬圆的水平投影,水平投影
28、,a a在此圆上。在此圆上。例例例例 根据部分球面的正面投影和水平投影,求作侧根据部分球面的正面投影和水平投影,求作侧面投影,并根据球面上面投影,并根据球面上A A点的正面投影点的正面投影a a 和和B B点的点的水平投影水平投影b b,作出其余的投影。,作出其余的投影。解:解:解:解:本题表示的是本题表示的是1/41/4球面,其侧面投影为一扇形。球面,其侧面投影为一扇形。用纬圆法可求出用纬圆法可求出A A和和B B的其余各投影。的其余各投影。圆绕与其共面但不通过圆心的轴线旋转,生成环面。外圆绕与其共面但不通过圆心的轴线旋转,生成环面。外半圆周生成外环面,内半圆周生成内环面。半圆周生成外环面,
29、内半圆周生成内环面。2、环面 图示环面的正面投影上,画出了轴线和外形线,包图示环面的正面投影上,画出了轴线和外形线,包括母线上最高、最低点的轨迹及两个反映实形的母线圆括母线上最高、最低点的轨迹及两个反映实形的母线圆的投影,其中内半圆的投影为不可见。水平投影上画出的投影,其中内半圆的投影为不可见。水平投影上画出了母线圆的圆心轨迹及外形线,包括母线圆上最外、最了母线圆的圆心轨迹及外形线,包括母线圆上最外、最内点轨迹圆的投影。内点轨迹圆的投影。在环面上作点,一般用纬圆法。在环面上作点,一般用纬圆法。例例 已知已知1/41/4环面上环面上A A、B B两点的正面投影,求其余投影。两点的正面投影,求其余投影。解:先根据已知投影的可见性,判断点在环面上的部位,解:先根据已知投影的可见性,判断点在环面上的部位,作纬圆求出点的相应投影。作纬圆求出点的相应投影。