《新课标人教A版高中数学选修22全套教案.doc》由会员分享,可在线阅读,更多相关《新课标人教A版高中数学选修22全套教案.doc(85页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档高中数学教案选修全套【选修2-2教案全套】目 录目 录I第一章导数及其应用1变化率问题1导数与导函数的概念4导数的概念6导数的几何意义9几个常用函数的导数13根本初等函数的导数公式及导数的运算法那么16复合函数的求导法那么19函数的单调性与导数2课时22函数的极值与导数2课时27函数的最大小值与导数2课时31生活中的优化问题举例2课时34定积分的概念38第二章 推理与证明42合情推理42类比推理45演绎推理48推理案例赏识50直接证明-综合法与分析法52间接证明-反证法54数学归纳法56第3章 数系的扩充与复数的引入67数系的扩充和复数的概念67数系的扩充和复数的概念67复数的几何意义
2、70复数代数形式的四那么运算73复数代数形式的加减运算及几何意义73复数代数形式的乘除运算77第一章导数及其应用1变化率问题教学目标:1理解平均变化率的概念;2了解平均变化率的几何意义;3会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念教学过程:一创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求函数的最大值与最小值;四、求长度、面积
3、、体积和重心等。导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大小值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度二新课讲授一问题提出问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?n 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是n 如果将半径r表示为体积V的函数,那么分析: ,hto 当V从0增加到1时,气球半径增加了气球的平均膨胀率为 当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出,随着气球体积逐渐
4、增大,它的平均膨胀率逐渐变小了思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 问题2 高台跳水在高台跳水运动中,运发动相对于水面的高度h(单位:m)与起跳后的时间t单位:s存在函数关系h(t)= -t2t+10.如何用运发动在某些时间段内的平均速度粗略地描述其运动状态?思考计算:和的平均速度在这段时间里,;在这段时间里,探究:计算运发动在这段时间里的平均速度,并思考以下问题:运发动在这段时间内使静止的吗?你认为用平均速度描述运发动的运动状态有什么问题吗?探究过程:如图是函数h(t)= -t2t+10的图像,结合图形可知,所以,虽然运发动在这段时间里的平均速度为,但实际情况是运发动
5、仍然运动,并非静止,可以说明用平均速度不能精确描述运发动的运动状态二平均变化率概念:1上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率2假设设, (这里看作是对于x1的一个“增量可用x1+代替x2,同样)3 那么平均变化率为思考:观察函数f(x)的图象平均变化率表示什么?f(x2)y=f(x)yy =f(x2)-f(x1)f(x1)直线AB的斜率x= x2-x1x2x1xO三典例分析例1函数f(x)=的图象上的一点及临近一点,那么 解:,例2 求在附近的平均变化率。解:,所以 所以在附近的平均变化率为四课堂练习1质点运动规律为,那么在时间中相应的平均速度为 s(t)
6、=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.3.过曲线y=f(x)=x3上两点P1,1和Q (1+x,1+y)作曲线的割线,求出当x=0.1时割线的斜率.五回忆总结1平均变化率的概念2函数在某点处附近的平均变化率六布置作业导数与导函数的概念教学目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点: 1、导数的求解方
7、法和过程;2、导数符号的灵活运用教学难点: 1、导数概念的理解;2、导函数的理解、认识和运用教学过程:一、情境引入在前面我们解决的问题:1、求函数在点2,4处的切线斜率。,故斜率为4 2、直线运动的汽车速度V与时间t的关系是,求时的瞬时速度。,故斜率为4 二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间,上的函数,当无限趋近于0时,无限趋近于一个固定的常数A,那么称在处可导,并称A为在处的导数,记作或,上述两个问题中:1,2三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求以下函数在相应位置的导数1, 2
8、,3,例2、函数满足,那么当x无限趋近于0时,1 2 变式:设f(x)在x=x0处可导,3无限趋近于1,那么=_4无限趋近于1,那么=_5当x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、假设,求和注意分析两者之间的区别。例4:函数,求在处的切线。导函数的概念涉及:的对于区间,上任意点处都可导,那么在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。五、小结与作业1.1.2导数的概念教学目标:1了解瞬时速度、瞬时变化率的概念;2理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3会求函数在某点的导数
9、教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念教学过程:一创设情景一平均变化率二探究:计算运发动在这段时间里的平均速度,并思考以下问题:运发动在这段时间内使静止的吗?你认为用平均速度描述运发动的运动状态有什么问题吗?探究过程:如图是函数h(t)= -t2t+10的图像,结合图形可知,hto 所以,虽然运发动在这段时间里的平均速度为,但实际情况是运发动仍然运动,并非静止,可以说明用平均速度不能精确描述运发动的运动状态二新课讲授1瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运发动的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运发动的瞬时速度呢?比方,时的瞬时速
10、度是多少?考察附近的情况:思考:当趋近于0时,平均速度有什么样的变化趋势?结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运发动在时的瞬时速度是为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2 导数的概念从函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在出的导数,记作或,即 说明:1导数即为函数y=f(x)在x=x0处的瞬时变化率 2,
11、当时,所以三典例分析例11求函数y=3x2在x=1处的导数.分析:先求f=y=f(x)-f()=6x+(x)2再求再求解:法一略 法二:2求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解: 例2课本例1将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度单位:为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义解:在第时和第时,原油温度的瞬时变化率就是和根据导数定义,所以同理可得:在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升注:一般地,反映了原油温度在时刻附近的变化
12、情况四课堂练习1质点运动规律为,求质点在的瞬时速度为2求曲线y=f(x)=x3在时的导数3例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义五回忆总结1瞬时速度、瞬时变化率的概念2导数的概念六布置作业1.1.3导数的几何意义教学目标:1了解平均变化率与割线斜率之间的关系;2理解曲线的切线的概念;3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义教学过程:一创设情景一平均变化率、割线的斜率二瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)
13、在x=x0附近的变化情况,导数的几何意义是什么呢?二新课讲授一曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?我们发现,当点沿着曲线无限接近点P即x0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.问题:割线的斜率与切线PT的斜率有什么关系? 切线PT的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即说明:1设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念: 提供了求曲线上某点切线的斜率的一种方法; 切线斜率的本质函数在处的导数.2曲线在某点处的切线:1
14、)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,那么在此点有切线,且切线是唯一的;如不存在,那么在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.二导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即 说明:求曲线在某点处的切线方程的根本步骤:求出P点的坐标;求出函数在点处的变化率 ,得到曲线在点的切线的斜率;利用点斜式求切线方程.二导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生
15、混淆时,导函数也简称导数三函数在点处的导数、导函数、导数 之间的区别与联系。1函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。三典例分析例1:1求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.2求函数y=3x2在点处的导数.解:1,所以,所求切线的斜率为2,因此,所求的切线方程为即2因为所以,所求切线的斜率为6,因此,所求的切线方程为即2求函数f(x)=在附近的平均变化率,并求出在该点处
16、的导数 解: 例2课本例2如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比拟曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比拟平坦,几乎没有升降(2) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减(3) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢例3课本例3如图3.1-4,它表示人体血管中药物浓度(单位:)随时间单位:变化的图象根据
17、图像,估计时,血管中药物浓度的瞬时变化率精确到解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作处的切线,并在切线上去两点,如,那么它的斜率为:所以 下表给出了药物浓度瞬时变化率的估计值:药物浓度瞬时变化率0-四课堂练习1求曲线y=f(x)=x3在点处的切线;2求曲线在点处的切线五回忆总结1曲线的切线及切线的斜率;2导数的几何意义六布置作业 1.2.1几个常用函数的导数教学目标:1使学生应用由定义求导数的三个步骤推导四种常见函
18、数、的导数公式; 2掌握并能运用这四个公式正确求函数的导数教学重点:四种常见函数、的导数公式及应用教学难点: 四种常见函数、的导数公式教学过程:一创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度那么,对于函数,如何求它的导数呢?由导数定义本身,给出了求导数的最根本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比拟简捷的求导数的方法,下面我们求几个常用的函数的导数二新课讲授1函数的导数 根据导数定义,因为所以函数导数表示函数图像图3.2-1上每一
19、点处的切线的斜率都为0假设表示路程关于时间的函数,那么可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态2函数的导数因为所以函数导数表示函数图像图3.2-2上每一点处的切线的斜率都为1假设表示路程关于时间的函数,那么可以解释为某物体做瞬时速度为1的匀速运动3函数的导数因为所以函数导数表示函数图像图3.2-3上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化另一方面,从导数作为函数在一点的瞬时变化率来看,说明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快假设表示路程关于时间的函数,那么可以解释为某物体做变速运动,它在时刻的瞬时速度为4函数的导数因为所
20、以函数导数2推广:假设,那么三课堂练习1课本P13探究12课本P13探究24求函数的导数四回忆总结函数导数五布置作业1根本初等函数的导数公式及导数的运算法那么教学目标:1熟练掌握根本初等函数的导数公式; 2掌握导数的四那么运算法那么;3能利用给出的根本初等函数的导数公式和导数的四那么运算法那么求简单函数的导数教学重点:根本初等函数的导数公式、导数的四那么运算法那么教学难点: 根本初等函数的导数公式和导数的四那么运算法那么的应用教学过程:一创设情景函数导数四种常见函数、的导数公式及应用二新课讲授一根本初等函数的导数公式表函数导数二导数的运算法那么导数运算法那么1232推论: 常数与函数的积的导数
21、,等于常数乘函数的导数三典例分析例1假设某国家在20年期间的年均通货膨胀率为,物价单位:元与时间单位:年有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少精确到0.01?解:根据根本初等函数导数公式表,有所以元/年因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨例2根据根本初等函数的导数公式和导数运算法那么,求以下函数的导数12y ;3y x sin x ln x;4y ;5y 6y 2 x25 x 1ex7 y 【点评】 求导数是在定义域内实行的 求较复杂的函数积、商的导数,必须细心、耐心例3日常生活中的饮水通常是经过净化的随
22、着水纯洁度的提高,所需净化费用不断增加将1吨水净化到纯洁度为时所需费用单位:元为求净化到以下纯洁度时,所需净化费用的瞬时变化率:1 2解:净化费用的瞬时变化率就是净化费用函数的导数(1) 因为,所以,纯洁度为时,费用的瞬时变化率是52.84元/吨(2) 因为,所以,纯洁度为时,费用的瞬时变化率是1321元/吨 函数在某点处导数的大小表示函数在此点附近变化的快慢由上述计算可知,它表示纯洁度为左右时净化费用的瞬时变化率,大约是纯洁度为左右时净化费用的瞬时变化率的25倍这说明,水的纯洁度越高,需要的净化费用就越多,而且净化费用增加的速度也越快四课堂练习1课本P92练习2曲线C:y 3 x 42 x3
23、9 x24,求曲线C上横坐标为1的点的切线方程;y 12 x 8五回忆总结1根本初等函数的导数公式表2导数的运算法那么六布置作业1复合函数的求导法那么教学目标 理解并掌握复合函数的求导法那么教学重点 复合函数的求导方法:复合函数对自变量的导数,等于函数对中间变量的导数乘以中间变量对自变量的导数之积教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确一创设情景一根本初等函数的导数公式表函数导数二导数的运算法那么导数运算法那么1232推论: 常数与函数的积的导数,等于常数乘函数的导数二新课讲授复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和
24、的复合函数,记作。复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积假设,那么三典例分析例1求y sintan x2的导数【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果例2求y 的导数【点评】此题练习商的导数和复合函数的导数求导数后要予以化简整理例3求y sin4x cos 4x的导数【解法一】y sin 4x cos 4x(sin2x cos2x)22sin2cos2x1sin22 x11cos 4 xcos 4 xysin 4 x【解法二
25、】y(sin 4 x)(cos 4 x)4 sin 3 x(sin x)4 cos 3x (cos x)4 sin 3 x cos x 4 cos 3 x (sin x)4 sin x cos x (sin 2 x cos 2 x)2 sin 2 x cos 2 xsin 4 x【点评】解法一是先化简变形,简化求导数运算,要注意变形准确解法二是利用复合函数求导数,应注意不漏步例4曲线y xx 12x有两条平行于直线y x的切线,求此二切线之间的距离【解】y x 3 x 2 2 x y3 x 22 x 2 令y1即3 x22 x 10,解得 x 或x 1于是切点为P1,2,Q,过点P的切线方程为
26、,y 2x 1即 x y 10显然两切线间的距离等于点Q 到此切线的距离,故所求距离为四课堂练习1求以下函数的导数 (1) y =sinx3+sin33x;2;(3)的导数五回忆总结六布置作业1函数的单调性与导数2课时教学目标:1了解可导函数的单调性与其导数的关系; 2能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间教学过程:一创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及
27、函数的最大值或最小值等性质是非常重要的通过研究函数的这些性质,我们可以对数量的变化规律有一个根本的了解下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用二新课讲授 1问题:图3.3-11,它表示跳水运动中高度随时间变化的函数的图像,图3.3-12表示高台跳水运发动的速度随时间变化的函数的图像运发动从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运发动从起点到最高点,离水面的高度随时间的增加而增加,即是增函数相应地,(2) 从最高点到入水,运发动离水面的高度随时间的增加而减少,即是减函数相应地,2函数的单调性与导数的关系观察下面
28、函数的图像,探讨函数的单调性与其导数正负的关系如图3.3-3,导数表示函数在点处的切线的斜率在处,切线是“左下右上式的,这时,函数在附近单调递增;在处,切线是“左上右下式的,这时,函数在附近单调递减结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:1特别的,如果,那么函数在这个区间内是常函数3求解函数单调区间的步骤:1确定函数的定义域;2求导数;3解不等式,解集在定义域内的局部为增区间;4解不等式,解集在定义域内的局部为减区间三典例分析例1导函数的以下信息:当时,;当,或时,;当,或时,试画出函数图像的大致形状解:当时,可知
29、在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,这两点比拟特殊,我们把它称为“临界点综上,函数图像的大致形状如图3.3-4所示例2判断以下函数的单调性,并求出单调区间1; 23; 4解:1因为,所以, 因此,在R上单调递增,如图3.3-51所示2因为,所以, 当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-52所示3因为,所以, 因此,函数在单调递减,如图3.3-53所示4因为,所以 当,即 时,函数 ;当,即 时,函数 ;函数的图像如图3.3-54所示注:3、4生练例3 如图3.3-6,水以常速即单位时间内注入水的体积相同注入下面四种底面积相同的容器中
30、,请分别找出与各容器对应的水的高度与时间的函数关系图像分析:以容器2为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快反映在图像上,A符合上述变化情况同理可知其它三种容器的情况 解:思考:例3说明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢结合图像,你能从导数的角度解释变化快慢的情况吗? 一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比拟“陡峭;反之,函数的图像就“平缓一些如图3.3-7所示,函数在或内的图像“陡峭,在或内的图像“平缓例4 求证:函数在区间内是减函数证明:因为当即时,所以
31、函数在区间内是减函数说明:证明可导函数在内的单调性步骤:1求导函数;2判断在内的符号;3做出结论:为增函数,为减函数例5 函数 在区间上是增函数,求实数的取值范围解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为说明:函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“假设函数单调递增,那么;假设函数单调递减,那么来求解,注意此时公式中的等号不能省略,否那么漏解四课堂练习1求以下函数的单调区间1.f(x)=2x36x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx2课本 练习五回忆总结1函数的单调性与导
32、数的关系2求解函数单调区间3证明可导函数在内的单调性六布置作业1.3.2函数的极值与导数2课时教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.教学过程:一创设情景观察图3.3-8,我们发现,时,高台跳水运发动距水面高度最大那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大附近函数的图像,如图3.3-9可以看出;在,当时,函数单调递增,;当时,函数单
33、调递减,;这就说明,在附近,函数值先增,后减,这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有对于一般的函数,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号二新课讲授 1问题:图3.3-11,它表示跳水运动中高度随时间变化的函数的图像,图3.3-12表示高台跳水运发动的速度随时间变化的函数的图像运发动从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(3) 运发动从起点到最高点,
34、离水面的高度随时间的增加而增加,即是增函数相应地,(4) 从最高点到入水,运发动离水面的高度随时间的增加而减少,即是减函数相应地,2函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系如图3.3-3,导数表示函数在点处的切线的斜率在处,切线是“左下右上式的,这时,函数在附近单调递增;在处,切线是“左上右下式的,这时,函数在附近单调递减结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:1特别的,如果,那么函数在这个区间内是常函数3求解函数单调区间的步骤:1确定函数的定义域;2求导数;3解不等式,解集在
35、定义域内的局部为增区间;4解不等式,解集在定义域内的局部为减区间三典例分析例1导函数的以下信息:当时,;当,或时,;当,或时,试画出函数图像的大致形状解:当时,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,这两点比拟特殊,我们把它称为“临界点综上,函数图像的大致形状如图3.3-4所示例2判断以下函数的单调性,并求出单调区间1; 23; 4解:1因为,所以, 因此,在R上单调递增,如图3.3-51所示2因为,所以, 当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-52所示(5) 因为,所以, 因此,函数在单调递减,如图3.3-53所示(6) 因为,所
36、以 当,即 时,函数 ;当,即 时,函数 ;函数的图像如图3.3-54所示注:3、4生练例6 如图3.3-6,水以常速即单位时间内注入水的体积相同注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像分析:以容器2为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快反映在图像上,A符合上述变化情况同理可知其它三种容器的情况解:思考:例3说明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢结合图像,你能从导数的角度解释变化快慢的情况吗? 一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,
37、这时,函数的图像就比拟“陡峭;反之,函数的图像就“平缓一些如图3.3-7所示,函数在或内的图像“陡峭,在或内的图像“平缓例7 求证:函数在区间内是减函数证明:因为当即时,所以函数在区间内是减函数说明:证明可导函数在内的单调性步骤:1求导函数;2判断在内的符号;3做出结论:为增函数,为减函数例8 函数 在区间上是增函数,求实数的取值范围解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为说明:函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“假设函数单调递增,那么;假设函数单调递减,那么来求解,注意此时公式中的等号不能省略,否那么漏解四课
38、堂练习1求以下函数的单调区间1.f(x)=2x36x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx2课本P101练习五回忆总结1函数的单调性与导数的关系2求解函数单调区间3证明可导函数在内的单调性六布置作业1.3.3函数的最大小值与导数2课时教学目标:使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点包括端点处的函数中的最大或最小值必有的充分条件;使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系教学过程:一创设情景我们知道,极值反映的
39、是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质也就是说,如果是函数的极大小值点,那么在点附近找不到比更大小的值但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小如果是函数的最大小值,那么不小大于函数在相应区间上的所有函数值二新课讲授观察图中一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是1结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值说明:如果在某一区间上函数的图像是一条连续不断的曲线,那么称函数在这个区间上连续可以不给学生讲给定函数的区间必须是闭区间,在开区间内连续
40、的函数不一定有最大值与最小值如函数在内连续,但没有最大值与最小值;在闭区间上的每一点必须连续,即函数图像没有间断,函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件可以不给学生讲2“最值与“极值的区别和联系最值是整体概念,是比拟整个定义域内的函数值得出的,具有绝对性;而“极值是个局部概念,是比拟极值点附近函数值得出的,具有相对性从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值