初二数学几何综合训练题与答案.doc

上传人:z**** 文档编号:89808173 上传时间:2023-05-13 格式:DOC 页数:7 大小:191.50KB
返回 下载 相关 举报
初二数学几何综合训练题与答案.doc_第1页
第1页 / 共7页
初二数学几何综合训练题与答案.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《初二数学几何综合训练题与答案.doc》由会员分享,可在线阅读,更多相关《初二数学几何综合训练题与答案.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、优质文本初二几何难题训练题1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点1求证ADEBCF:2假设AD=4cm,AB=8cm,求CF的长。证明:1在矩形ABCD中,AC,BD为对角线,AO=OD=OB=OC DAO=ADO=CBO=BCO E,F为OA,OB中点 AE=BF=1/2AO=1/2OB AD=BC, DAO=CBO,AE=BF ADEBCF2过F作MNDC于M,交AB于N AD=4cm,AB=8cmBD=4根号5 BF:BD=NF:MN=1:4 NF=1,MF=3 EF为AOB中位线 EF=1/2AB=4cm 四边形DCFE为等腰梯形 MC=2cm FC=

2、根号13cm。 2,如图,在直角梯形ABCD中,ABDC,ABC=90,AB=2DC,对角线ACBD,垂足为F,过点F作EFAB,交AD于点E,CF=4cm1求证:四边形ABFE是等腰梯形;2求AE的长 1证明:过点D作DMAB,DCAB,CBA=90,四边形BCDM为矩形DC=MBAB=2DC,AM=MB=DCDMAB,AD=BDDAB=DBAEFAB,AE与BF交于点D,即AE与FB不平行,四边形ABFE是等腰梯形2解:DCAB,DCFBAFCD AB =CF AF =1 2 CF=4cm,AF=8cmACBD,ABC=90,在ABF与BCF中,ABC=BFC=90,FAB+ABF=90,

3、FBC+ABF=90,FAB=FBC,ABFBCF,即BF CF =AF BF ,BF2=CFAFBF=4 2 cmAE=BF=4 2 cm3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,1假设AB=6,求线段BP的长;2观察图形,是否有三角形与ACQ全等?并证明你的结论 解:1菱形ABGH、BCFG、CDEF是全等菱形BC=CD=DE=AB=6,BGDEAD=3AB=36=18,ABG=D,APB=AEDABPADEBP DE =AB ADBP=AB AD DE=6 18 6=2;2菱形ABGH、BCFG、CDEF是全等的菱形

4、AB=BC=EF=FGAB+BC=EF+FGAC=EGADHE1=2BGCF3=4EGPACQ4,点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH/EG/AC,FH、EC分别交边BC所在的直线于点H,G1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?4 请你就1,2,3的结论,选择一种情况给予证明 解:1FHEGAC,BFH=BEG=A,BFHBEGBACBF/FH=BE/EG=BA

5、/ACBF+BE/FH+EG=BA/AC又BF=EA,EA+BE/FH+EG=AB/ACAB/FH+EG=AB/ACAC=FH+EG2线段EG、FH、AC的长度的关系为:EG+FH=AC证明2:过点E作EPBC交AC于P,EGAC,四边形EPCG为平行四边形EG=PCHFEGAC,F=A,FBH=ABC=AEP又AE=BF,BHFEPAHF=APAC=PC+AP=EG+HF即EG+FH=AC5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CDOA于点D,DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离 解:连接AB

6、,同时连接OC并延长交AB于E,因为夹子是轴对称图形,故OE是对称轴,OEAB,AE=BE,RtOCDRtOAE,OC:OA = CD:AEOC=OD+CD OC =26,AE= =15,AB=2AE AB =30mm8分答:AB两点间的距离为30mm6,如图,在平行四边形ABCD中,过点B作BECD,垂足为E,连接AE,F为AE上一点,且BFE=C,1求证:ABFEAD ;2假设AB=5,AD=3,BAE=30,求BF的长解:1四边形ABCD是平行四边形 ABCD,ADBC BAE=AED,D+C=180 且BFE+AFB=180 又BFE=C D=AFB BAE=AED,D=AFB ABF

7、EAD2BAE=30,且ABCD,BECD ABEA为Rt,且BAE=30 又 AB=4 AE=3分之8倍根号3 7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,假设CF=15cm,求GF之长。 解CE=DE BE=AE ,ACEBDE ACE=BDE BDE+FDE=180 FDE+ACE=180 ACFB AGCBGFD是FB中点 DB=AC AC:FB=1:2 CG:GF=1:2 ;设GF为x 那么CG为15-X GF=CF/3C2=10cm 8,如图1,四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FHCD交

8、BC于H,可以证明结论FH/AB =FG /BG 成立考生不必证明1探究:如图2,上述条件中,假设G在CD的延长线上,其它条件不变时,其结论是否成立?假设成立,请给出证明;假设不成立,请说明理由;2计算:假设菱形ABCD中AB=6,ADC=60,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FHCD交BC所在的直线于H,求BG与FG的长3发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗? 解:1结论FH AB =FG BG 成立证明:由易得FHAB,FH/ AB =HC/ BC ,FHGC,HC BC =FG BGFH/ AB =FG/

9、 BG 2G在直线CD上,分两种情况讨论如下:G在CD的延长线上时,DG=10,如图1,过B作BQCD于Q,由于四边形ABCD是菱形,ADC=60,BC=AB=6,BCQ=60, 又由FHGC,可得FH/ GC =BH /BC ,而CFH是等边三角形,BH=BC-HC=BC-FH=6-FH,FH 16 =6-FH 6 ,FH=48 11 ,由1知FH/ AB =FG/ BG ,G在DC的延长线上时,CG=16,如图2,过B作BQCG于Q,四边形ABCD是菱形,ADC=60,BC=AB=6,BCQ=60又由FHCG,可得FH/ GC =BH/ BC ,FH 16 =BH 6 BH=HC-BC=FH-BC=FH-6,9,如图,直角梯形ABCD中,ADBC,B=90,AB=12cm,BC=8cm,DC=13cm,动点P沿ADC线路以2cm/秒的速度向C运动,动点Q沿BC线路以1cm/秒的速度向C运动P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止设运动时间为t秒,PQB的面积为ycm21求AD的长及t的取值范围;tt0t0为1中t的最大值时,求y关于t的函数关系式;3请具体描述:在动点P、Q的运动过程中,PQB的面积随着t的变化而变化的规律

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁