《位置式PID控制原理机械仪表工程科技专业资料.docx》由会员分享,可在线阅读,更多相关《位置式PID控制原理机械仪表工程科技专业资料.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、PID控制原理 PID控制是一种在工业生产中应用最广泛的控制方法,其最大的优点是不需要了解被控对象精确的数学模型,进行复杂的理论计算。只需要在线根据被控变量与给定值之间的偏差以及偏差的变化率等简单参数,通过工程方法对比例系数、积分时间、微分时间三个参数进行调整,就可以得到令人满意的控制效果。PID控制算法可以分为位置型控制算法和增量型控制算法,本文主要讨论位置型控制算。1 自动控制性能指标的相关概念1.1系统的响应速度指控制系统对偏差信号做出反映的速度,也叫做系统灵敏度。一般可以通过上升时间和峰值时间进行反应。上升时间和峰值时间越短,则系统的响应速度越快。1.2系统的调节速度系统的快速性主要由
2、调节时间来反映,系统的调节时间越短,则系统的快速性越好。系统的快速性与响应速度是两个不同的概念,响应速度快的系统,其调节时间不一定短;调节时间短的系统,其响应速度不一定很高。1.3系统的稳定性系统的稳定性一般用超调量来反映,超调量越小,系统的稳定性越好;超调量越大,系统的稳定性越差。系统的稳定性与系统的响应速度是一对矛盾体。2 PID控制算法式的推导PID控制器的微分方程为:式中:给定值与被控变量的偏差比例系数积分时间常数微分时间常数从开始进行调节到输出当前控制量所经过的时间间隔PID调节开始之前瞬间,执行器的输入控制信号,在调节过程中为固定值对以上各式左右两边分别进行拉普拉斯变换可得PID控
3、制器的传递函数为: 比例项:积分项:微分项:对上式进行离散化可得数字式PID控制算式为:式中: 当前采样时刻给定值与被控变量的偏差PID控制采样周期,也就是计算机获取和 的时间间隔1、 一阶后向差分方程对微分的离散化: 2、 累加法对积分的近似离散等效 ,则位置式PID控制在当前采样时刻输出至执行器的控制量计算式为:式中:当前采样时刻输出的控制变量PID调节开始之前瞬间,执行器的输入控制信号3 比例、积分、微分环节的作用3.1 比例环节比例环节是PID控制器中必不可少的环节。比例环节的作用为放大误差信号,提高控制器对于偏差信号的感应灵敏度,其特点是不失真、不延迟、成比例的复现控制器输入信号的变
4、化。过大的比例系数会使系统的稳定性降低、增加超调量,出现振荡甚至发散。控制系统的稳定性与灵敏性是一对矛盾,比例系数的选择只能在稳定性与灵敏性之间进行折中选择。积分环节输出控制量计算公式为:。若控制器中仅有比例控制环节,则会产生调节余差,如下图所示:1 比例控制稳态误差产生的原因单纯的比例环节所产生稳态误差的原因主要有两个方面,分别为原理性稳态误差和结构性稳态误差。1.1 原理性稳态误差原理性稳态误差是由比例控制系统的原理所引起的,以调节阀流量控制系统为例进行说明: 如图所示为单回路流量比例控制系统,控制系统的给定流量值为,被控变量为流量值。调节阀为电流控制,其开度与输入电流值的关系为: 设调节
5、开始时,偏差为,则调节阀的输入信号为,为调节阀的初始输入电流值。则有但调节阀从其初始位置开始动作到达到动作终点需要一定时间,而随着调节阀的动作,偏差值也会不断发生变化,使得调节阀的输入信号也不断变化。当某一时刻,调节阀的开度和输入信号满足关系时,调节阀将停止动作,由调节阀所控制的被控流量值也将停止变化,偏差值也将保持不变,控制系统达到稳定平衡状态。控制变量随时间变化的波形图被控变量随时间变化的波形图可以发现,调节阀要想在原开度的基础上保持一定的开度增量,就必须有输入电流信号,这就使得值不能为0 (若的值为0,则调节阀的输入电流值就会为,调节阀的开度值也将会为初始开度值,此时的流量值就会为0)。
6、1.2 结构性稳态误差结构性稳态误差:控制系统由于元件的不灵敏、零点漂移、老化及机械间隙、摩擦、死区等因素所引起的系统稳态误差,称为结构性稳态误差。调节阀的死区又叫做调节阀的不灵敏区,其定义为:执行器输入控制信号的变化不致引起执行机构有可察觉动作的有限区间。-使调节阀执行器发生动作的输入电流值-调节阀的起始输入电流值-调节阀输入电流值得范围,20-4=16mA2.比例环节产生稳态误差的消除引入积分环节,可以消除结构性稳态误差和原理性稳态误差。3.2 积分环节积分环节可以起到位置记忆功能,将设定值与反馈值的偏差不断进行积累,使控制器的输出控制信号不断增强,直到偏差为0,从而消除系统的稳态误差。积
7、分环节输出控制量计算公式为: ,当积分时间增大时,积分作用减弱,消除偏差所需的时间也就较长,但可以减小超调,提高动态响应的平稳性。当减小时,积分作用加强,消除偏差所需时间也较短,但过小的将有可能引起振荡甚至造成系统的不稳定,因为积分环节输出的控制信号总是滞后于偏差的变化。此外,过强的积分作用还有可能引起积分饱和,带来较大的超调量并延缓了进入稳定状态的速度。3.3 微分环节微分环节根据偏差的变化趋势输出控制量,并能在偏差值发生较大变化之前输出超前校正信号。微分环节可以使系统的超调量下降,同时改善系统的动态调节速度。微分环节输出控制量计算公式为: ,当微分时间常数过大时,会使响应过程提前制动(例如
8、下图第20秒左右,即出现系统提前制动的现象),从而延长调节时间并出现余差。此外过强的微分作用还会使系统对高频噪声干扰过于敏感,削弱系统的抗干扰能力。在控制器中加入微分环节可以起到三方面的作用(1)调节的起始时刻适当的选取系数和,可以加快系统调节的反应速度,缩短调节时间。PD控制器开始调节后所输出的第一拍控制变量为,其中该过程可以理解为偏差值从0跃变为。由于具有抑制偏差发生变化的作用,微分环节将会输出使偏差值绝对值减小的控制量。这部分控制量将会作为的补充量,加快控制系统调节的响应速度。(2)调节过程之中适当的选取系数和,可以减小控制系统的超调量,克服系统振荡,进而改善控制系统的动态特性,缩短调节
9、时间。 当调节开始之后,被控变量迅速向目标值靠拢,使得偏差值的绝对值迅速减小,由于具有抑制偏差发生变化的作用,微分环节可以在超调发生之前,输出“制动”控制量,从而避免由于被控变量改变过于迅速而引起的超调现象。如下图所示,图一为无微分环节控制器调节效果图,控制系统输出的被控变量出现了较大的超调量。图二为带微分环节控制器的调节效果图。图三为带微分环节控制器输出控制变量图。在图三第15秒左右,由于微分环节的作用,控制器输出控制量明显减小,使控制系提前制动,避免了超调现象。 图一图二图三(3)稳定状态下当控制系统处于稳定状态时,若被控对象受到扰动作用而使被控变量偏离给定值时,偏差值将会同时有发生改变的
10、趋势。若有微分环节的存在,控制器可以在偏差值尚未产生较大变化之前,迅速做出反应,抑制偏差的变化,从而抑制被控变量的波动,保持控制系统输出被控变量的稳定性。若微分环节系数选取过大,使微分作用过强,也会产生一定的副作用(1)调节的起始时刻 若微分作用过强,将有可能使控制器输出的控制信号过大,使执行器动作过位,使控制系统输出被控变量产生较大超调。(2)调节过程之中若微分作用过强,将会使控制系统输出被控变量制动过早,从而延长系统的调节时间。(3)稳定状态下过强的微分作用,会使控制器对作用于偏差的扰动过于敏感,从而使控制系统抗干扰能力下降。4 位置型PID控制算法和增量型PID控制算法的区别位置型PID
11、控制算法,适用于不带积分元件的执行器,执行器的动作位置与其输入信号呈一一对应的关系。控制器根据第次被控变量采样结果与设定值之间的偏差计算出第次采样之后所输出的控制变量。位置式PID控制算法的数学表达式为:其中是第次采样之后所输出的控制变量。控制变量的值将决定第次采样之后执行器的动作位置。以伺服调节阀对流体流量或压力进行调节为例进行说明。若所使用的调节阀输入控制信号为420mA电流,则当阀门执行器输入电流为4mA时,阀门的开度值为0%,当阀门执行器输入电流为20 mA时,阀门的开度值为100% 。阀门执行器输入的介于420mA的任一电流值,均与阀门的某一开度值成一一对应的关系,其对应关系表达式为
12、: 与位置型PID算法相对应的是增量式PID算法,增量式算法适用于自身带有积分记忆元件的执行器,此类执行器的特点是:执行器的动作终点位置与之前每次输入信号的累加值相关,每次执行器所输入的控制信号所决定的是本次执行器动作终点位置相对于上一次动作终点位置的改变量,此类执行器比较典型的有步进电机和步进电机驱动阀门。增量式PID算法输出控制变量表达式为:5 位置型PID控制的改进算法5.1 微分环节的改进5.1.1 不完全微分算法传统PID控制算法中微分环节的缺点PID控制器微分环节输出的控制量为,在应用实践中,如果在PID控制器输出的第一拍控制量中即加入微分的作用,发现微分环节具有以下两点副作用。(
13、1)过强的微分作用,会使控制器对作用于偏差的扰动过分敏感,从而使控制系统抗干扰能力下降。(2)微分环节有抑制偏差变化的特性。自动调节开始后微分环节所输出的第一拍控制变量为,其中,为调节开始时被控变量与给定值的偏差,起作用是抑制偏差的剧变,使被控变量向使偏差减小的方向变化。从第二拍起,随着偏差的减小,微分环节又开始抑制偏差的减小,使系统制动。因此微分环节仅在第一拍起到调节作用,从第二拍起主要起抑制超调的作用。若设置PID参数使第一拍微分作用过强,则容易使控制系统的输出出现超调或是使系统出现提前制动的现象;若设置PID参数使第一拍微分作用过弱,则不易发挥微分环节加快系统调节的反应速度,缩短调节时间
14、的作用。不完全微分算法即在原微分环节上添加一个具有低通滤波作用的惯性环节,其结构框图如下:则不完全微分环节的传递函数为,即,整理后可得 ,转化为微分方程后为,用一阶后向差分方程进行离散化为,整理之后可得完全微分与不完全微分的对比分别对完全微分环节和不完全微分环节施加一个阶跃输入(1)完全微分环节完全微分环节的输出表达式为,其输出值由来决定。、,则则完全微分环节仅在第一个控制采样周期之后有幅值为的输出值。(2)不完全微分环节不完全微分环节的输出表达式为,其输出值不仅与相关,还会受到的影响。、,则不完全微分环节不仅在第一个控制采样周期之后有幅值为的输出值,相对于完全微分环节在第一个控制采样周期之后
15、的输出有了一定的衰减,而且在后面的控制采样周期之后仍然有输出值,且个输出值以的比例进行衰减。因此采用不完全微分算法,可以达到以下目的:一、衰减了完全微分环节在第一个控制采样周期之后的输出值,避免了因过强的微分作用造成系统输出产生超调的现象。二、将微分环节的调节作用扩展至第一个控制采样周期之后的多个周期,强化了微分环节的调节作用。三、衰减了微分环节的脉冲输出,提高了控制系统的抗干扰性。5.1.2微分先行算法微分先行即将对偏差的微分改为对被控变量的微分,微分环节的输出为微分先行算法适用于给定值需要发生频繁改变的控制系统,对于此类系统,被控变量与给定值的偏差会出现频繁的跳变,如果对偏差进行微分,则会
16、使微分结果产生剧烈的脉冲变化,不利于控制系统的稳定,而控制系统的被控变量输出一般不会产生突变(即使给定值改变,被控变量的变化也是一个相对缓慢的过程),采用微分先行算法在预测输出变化趋势的同时,避免了控制量的脉冲式频繁突变,有利于系统的稳定。5.2 积分环节的改进积分饱和现象的产生及影响:当控制系统输出的被控变量长时间未达到给定值时,这段时间之内积分环节所产生的控制量将形成一个很大的积累值,PID控制器的输出控制量将由于积分环节的累积作用而不断增加。当控制量达到或超出执行机构的输入信号上下限时,此后执行机构将进入饱和区,不再随着输入控制量的增加而进一步的动作。当偏差值反向时,控制器的输出控制量需
17、要很长时间才能够退出饱和区,在这段时间之内执行机构将停留在极限位置而暂时失去控制,使控制系统性能恶化。5.2.1 积分限幅算法设置控制器输出控制量的极限值,当PID控制器的输出量超出设定范围后,即停止积分运算,仅保留比例及微分运算。算法原理如下所述:设定范围若,则若,则5.2.2 积分分离算法积分分离算法的基本思想是,当被控量与设计的偏差量偏差较大时,取消积分量,以免积分量使系统稳定性降低,超调量增大;当被控值接近定值时,引入积分控制,以消除静差,提高系统精度。算法原理如下所述:计算,设定门限值 ,控制器输出控制量为若,时 若,时在时,虽然控制器输出控制量中不含积分项,但控制器仍然将每次采样后
18、所得的偏差值进行累加运算。5.2.3 变速积分算法变速积分PID的基本思路是改变积分项的累加速度,使其与偏差大小相对应,当偏差值较大时,使积分速度减慢;当偏置值较小时,使积分速度加快。这样就可以起到抑制积分环节产生超调,同时缩短调节时间,提高控制精度的作用,算法原理如下所述:计算,设定系数值,控制器输出控制量为其中的值越大,则的值越小,则积分项累加的速度也就越慢;反之的值越小,则的值越大,则积分项累加的速度也就得到提高。为使区间之内,需使 。5.3 对比例环节的改进在调节过程的末段,当 小于某一值时,执行器只需再发生轻微的动作,就可以消除这一偏差,若比例系数的值设置偏大,则容易使执行器动作过量
19、而出现较大超调。因此可以设置一个非线性区间,同时令比例项的计算为。当偏差绝对值时,;当偏差绝对值时,。这样就可以设置一个较大的比例系数,时控制器在调节开始时刻调节速度较快,而在调节过程接近结束时,放慢调节速度,避免出现较大超调。6位置型PID控制的工程实现6.1 PID控制系统的功能构成 一个完备的PID控制系统需要具备以下功能: 可以在线进行PID控制比例系数、积分时间常数、微分时间常数、误差带、目标值和控制周期的设置 实现PID自动控制的启动及停止、实现执行器手动控制以及手动控制和自动控制之间的切换 实现被控变量和控制变量的监控及显示,同时用图像记录手动及自动调节过程中被控变量及控制变量的
20、变化,并能对图片进行删除和保存 能够对实验装置上的必要设备进行操作6.2 PID控制周期的选择PID控制周期也就是PID控制器周期性输出控制量的时间间隔。每经过一个控制周期,控制器计算一次被控变量与给定值之间的偏差,并依据偏差输出控制变量(在一个控制周期内,计算机可以对被控变量进行多次采样)。PID控制周期的选择要求如下: 控制器在本控制周期输出控制变量之后,在下一个控制周期到来之前,执行器可以完成响应动作,到达指定位置。 控制器在本控制周期输出控制变量之后,在下一个控制周期到来之前,被控变量可以产生相应改变。在满足上述要求的情况下,控制周期应当尽量缩短,以使PID控制系统可以精确跟踪被控变量
21、的瞬态变化并及时作出相应调整。控制采样周期的选取可以按照下表的经验值进行选取,一个设计完善的PID控制系统应当具备PID控制周期设置功能,这样就可以将不同控制周期下控制系统的性能进行对比,确定出最佳的控制周期。被控变量类型控制周期()流量压力液位温度成分6.3 PID控制偏差值的计算 偏差值的计算要根据控制器是正作用控制器还是反作用控制器来决定 正作用: 当被控变量大于给定值时,PID控制器所输出的控制量增加 反作用: 当被控变量小于给定值时,PID控制器所输出的控制量增加式中:第个控制采样时的偏差值第个控制采样时的被控变量值被控变量目标值PID控制算法式中,、均大于06.4 对控制量的处理P
22、ID控制器向执行机构输出的控制变量不允许超出执行机构输入信号的上限及下限。以电流控制调节阀为例,当控制器按照PID控制算法所得的电流控制量在之间时,控制器实际输出至调节阀执行器的控制电流值就是按照PID控制算法所得的电流值;当控制器按照PID控制算法所得的电流控制量小于时,控制器实际输出至调节阀执行器的控制电流值保持为;当控制器按照PID控制算法所得的电流控制量大于时,控制器实际输出至调节阀执行器的控制电流值保持为。 此外,对于对被控变量的上下限有严格要求的工艺,要求控制系统有上下限报警机制,同时报警后要有相关的安全措施。 6.5 手/自动的切换当控制系统从手动操作状态切换到自动控制状态时,必
23、须将PID算法公式中的控制变量初始值设置为手/自动的切换之前瞬间控制系统输出至执行机构的控制量值,才能保证手/自动的无冲击切换。同样,当控制系统从自动控制状态切换到手动操作状态时,也必须将软手动操作系统输出至执行机构的控制量设置为手/自动的切换之前瞬间PID控制器输出至执行机构控制量的值。6.6 值的设置在一个PID自动调节过程中,位置型PID控制算法公式中的是一个固定值,它的值并不随调节过程的进行而发生改变。的值即为PID调节开始之前瞬间,控制系统输出至执行机构的控制变量值。6.7 控制算法7 位置型PID控制参数的整定7.1 临界比例度法(1)在系统闭环的情况下,只保留比例环节,在积分环节
24、和微分环节之前分别乘以0。即将控制器的积分时间设置为无穷大,将微分时间设置为0,比例放大系数设为1。(2)通过给定值给系统施加一个阶跃输入,观察被控变量的变化情况。若的过渡过程无振荡或呈衰减振荡,则继续增大值;若的过渡过程呈发散振荡,则应减小值,直到调至某一值,过渡过程出现等幅振荡为止。这时过渡过程称之为临界振荡过程。出现临界振荡过程的放大倍数称为临界放大倍数,记为,等幅振荡的周期则称临界周期。(3)获得和这两个试验参数之后,按下表给出的经验公式,计算出使过度过程呈衰减比为4:1衰减振荡的控制器参数值。控制器类型控制器参数计算公式/s/sPID(比例、积分、微分控制器)0.60.50.12PI
25、0.450.83P0.5(4)根据各参数分别对控制系统动态性能和稳态性能的影响,适当调整控制参数,直到控制系统性能(超调量、稳态误差、调节时间)满意为止。缺点:1、如果工艺方面不允许被控变量做长时间的等幅振荡,这种方法就不能应用。2、这种方法只适用于二阶以上的高阶对象,或一阶加纯滞后的对象,否则,在纯比例控制情况下,系统将不会出现等幅振荡。7.2衰减曲线法7.2.1 衰减比为4:1的衰减曲线法(1)在系统闭环的情况下,只保留比例环节,在积分环节和微分环节之前分别乘以0。即将控制器的积分时间设置为无穷大,将微分时间设置为0,比例放大系数设为1。(2)通过给定值给系统施加一个阶跃输入,观察被控变量
26、的变化情况。若的过渡过程无振荡,则继续增大值;若的过渡过程呈发散振荡或等幅振荡,则减小值,使过渡过程出现衰减振荡。如果衰减比小大于4:1,值继续增加;如果衰减比小于4:1,值继续减小,直到过渡过程呈现4:1衰减为止。记此时的比例放大系数为,振荡周期记为。(3)通过上述试验可以找到过渡过程为衰减比4:1衰减振荡时的放大倍数为以及振荡周期。按下表给出的经验公式,计算出使过度过程呈衰减比为4:1衰减振荡的控制器参数值。控制器类型控制器参数计算公式/s/sPID(比例、积分、微分控制器)1.25 0.30.1PI0.830.5P(4)根据各参数分别对控制系统动态性能和稳态性能的影响,适当调整控制参数,
27、直到控制系统性能(超调量、稳态误差、调节时间)满意为止。7.2.2 衰减比为10:1的衰减曲线法在某些实际生产过程中,对控制过程的稳定性要求较高,认为4:1衰减过程的稳定性不够,希望衰减比再大一些,于是出现了10:1衰减过程,相应地也就出现了一种10:1衰减曲线法。(1)在系统闭环的情况下,只保留比例环节,在积分环节和微分环节之前分别乘以0。即将控制器的积分时间设置为无穷大,将微分时间设置为0,比例放大系数设为1。(2)通过给定值给系统施加一个阶跃输入,观察被控变量的变化情况。若的过渡过程无振荡,则继续增大值;若的过渡过程呈发散振荡或等幅振荡,则减小值,使过渡过程出现衰减振荡。如果衰减比小大于
28、10:1,值继续增加;如果衰减比小于10:1,值继续减小,直到过渡过程呈现10:1衰减为止。记此时的比例放大系数为,自调节开始至衰减曲线达到第一个峰值的上升时间为。(3)通过上述试验可以找到过渡过程为衰减比10:1衰减振荡时的放大倍数为以及上升时间。按下表给出的经验公式,计算出使过度过程呈衰减比为10:1衰减振荡的控制器参数值。控制器类型控制器参数计算公式/s/sPID(比例、积分、微分控制器)1.25 1.20.4PI0.832P(4)根据各参数分别对控制系统动态性能和稳态性能的影响,适当调整控制参数,直到控制系统性能(超调量、稳态误差、调节时间)满意为止。优点:衰减振荡易为控制工艺所接受,
29、这种整定方法应用比较广泛。缺点:有些对象中,由于控制过程进行的比较快,从被控变量记录曲线上读出衰减比有困难。衰减比不好确定,只能近似。7.3 响应曲线法这是一种用广义对象时间特性整定控制器参数的方法。(广义对象:控制阀、被控对象和测量变送装置合在一起,称为广义对象。)测试广义对象的时间特性具体做法如下:(1)首先不加入PID控制器,让系统处于软手动开环控制状态。将被控变量调节到预先设定的某一个给定值附近,并使之稳定(即测量值等于给定值的稳定状态)。通过软手动控制操作,瞬时改变执行机构的输入电流信号,使其输入一个阶跃信号(阶跃信号的幅度值,要占到控制信号量程的20%30%以上),并同时记录下被控
30、变量随时间变化的曲线。(2)从响应曲线的拐点A作一切线,分别交时间轴于B点以及最终稳态值水平线于C点,并通过C点引垂线交时间轴于D点。这样广义对象的特性就可以用一个具有纯滞后时间、时间常数为的一阶惯性环节来近似。其传递函数为:为干扰起始点至B点的距离。为BD之间的距离。与的单位都是s。一阶惯性环节放大倍数计算为: 式中:被控变量的跃变值(稳态值与初始值之差)执行器输入信号的跃变值(稳态值与初始值之差)被控变量量程上限值被控变量量程下限值执行器输入信号量程上限执行器输入信号量程下限 (3)根据、及三个参数,按下表所给出的经验公式,计算出过渡过程呈4:1衰减震荡时的PID控制器参数。控制器类型控制
31、器参数计算公式/s/sPID(比例、积分、微分控制器)1.2/ ()20.5PI0.9/ ()3.3K/ ()(4)切换为闭环PID控制,观察整定参数的效果。根据各参数分别对控制系统动态性能和稳态性能的影响,适当调整控制参数,直到控制系统性能(超调量、稳态误差、调节时间)满意为止。优点:响应曲线法具有较高的准确度。缺点:1、当广义对象是非自衡过程时无法应用本方法2、有些实际场合,不允许进行开环阶跃实验PID控制参数的调整依据在初步确定PID参数之后,还需要根据控制系统的控制性能对PID控制参数进行调整,调整依据如下:1、比例系数的调整增大比例系数可以提高系统响应速度,因此当控制系统调节时间过长
32、时可以适当将比例系数增大,使调节时间缩短;但过大的比例系数会使控制系统输出出现超调甚至震荡,因此当系统出现较大超调或震荡时可以适当减小比例系数。2、积分时间的调整减小积分时间常数,将使积分作用增强,使系统响应速度提高,使稳态误差减小。因此当控制系统调节时间过长或稳态误差过大 时可以适当将积分时间减小;但过强的积分作用会使控制系统输出出现超调,因此当系统出现较大超调或震荡时可以适当增大积分时间。3、微分时间的调整增大微分时间可以使系统的制动作用加强,因此当系统出现较大超调甚至震荡时,可以适当增大微分时间;但过强的微分作用又会使系统出现提前制动的现象,延长系统的调节时间,因此当系统出现提前制动的现象时,应该适当减小微分时间常数。当第一拍输出控制量中含有微分项时,微分项又起到加快系统响应速度的作用。