《2022高二上学期数学教学计划范文汇总六篇.docx》由会员分享,可在线阅读,更多相关《2022高二上学期数学教学计划范文汇总六篇.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022高二上学期数学教学计划范文汇总六篇高二上学期数学教学计划 篇1一、指导思想努力把握教学大纲和考试大纲的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。高二上学期数学教学计划 篇2教学目标;(1)了解频数、频率的概念,了解全距、组距的概念;(2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;(3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解
2、数形结合的数学思想和逻辑推理的数学方法、教学重点:正确地编制频率分布表、教学难点;会用样本频率分布去估计总体分布内容分析1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。3、介绍历史上从事抛掷硬币的几个案例,学习科学家对真理执着追求的精神。4、频率分布的条形图与直方图是有区别。条形图是用高度
3、来表示频率,直方图是用面积来表示频率。教学过程1、引入新课(1)介绍对“抛掷硬币”试验进行研究的科学家。(2)本次试验结果。(3)画出频率分布的条形图。(4)注意点:各直方长条的宽度要相同;相邻长条之间的间隔要适当。(5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。2、总体分布精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。3、复习频率分布(演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:12、5,15、5) 2 15、5,18、5) 3 18、5,21、5) 521、5,24、
4、5) 4 24、5,27、5) 1 27、5,30、5 5(1)列出样本的频率分布表和画出频率分布直方图。(2)频率直方图的横轴表示_;纵轴表示_。频率分布直方图中,各小矩形的面积等于_,各小矩形面积之和等于_。频率直方图的主要作用是_。讲解例题为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68人数 2 1 4 2 4 2 7 6身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77人数 8 7 4 3 2 1 2 1 1(1)根据
5、上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?(2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?(过程略)注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。(a)计算最大值与最小值的差(b)确定组距与组数。组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。(c)决定分点。分点要比数据多一位小数,
6、便于分组。分组区间采用左闭右开。(d)列出频率分布表(见教科书)。(e)画出频率分布图(见教科书)。4、得到样本频率后,应对总体的相应情况进行估计5、课堂练习教科书习题 1、2第2题。板书设计一、概念理解 二、应用1、频数、频率的容量的关系 例2、频率的取值范围 三、小结3、分布频率分布表四、作业高二上学期数学教学计划 篇3二、教学工作1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。同时对辅助资料加大研究,扩大自己的知识面以及同类学科之间的联系。2、准确把握新大纲。新大纲修改了部分内
7、容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。针对我们这的学生数学认知能力和基础不是很好,上课要精选试题,做好教案和学案。要使每位学生掌握基础知识为教学落脚点。3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。教好学前提要了解学生,关心爱护每位学生,要为学生提供宽松愉悦的课堂教学环境。4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性
8、课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。要和同仁根据教材各章节的重难点制定教学进度,认真对待集体备课和听课。积极听有经验的老师的教研活动,积累教学经验。三,教学计划要提前一周制定好下周教学学案和教案。要精选试题,力求少而精,有针对性。要备好课,选好教学方法。总之,教学是慢功夫,我会试图把它做好。高二上学期数学教学计划 篇4一、指导思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所
9、必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。5.提高学习数学的兴趣,树立学好数学的信心
10、,形成锲而不舍的钻研精神和科学态度。6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。二、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其
11、逻辑思维的习惯。三、教学措施。1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。2、详细计划,保证练习质量。教学中用配备资料创新设计,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优
12、生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。四、教学进度表(略)高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学上学期教学工作计划,希望大家喜欢。高二上学期数学教学计划 篇520xx-20xx年度工作已经开始,在新的一学年内,我们高二数学组全体老师将紧密团结在学校领导的周围,齐心协力、踏踏实实做好各自的教学和教育工作,在提高自己的教育教学的水平的同时,积极参与各项
13、教育教学活动,组织和制定本学科的研究性课题,争取在各种考试中取得理想的成绩。现将这学期的计划如下:一、指导思想“师者,传道授业解惑也。”教育的兴衰维系国家之兴衰,孩子的进步与徘徊事观家庭的喜怒和哀乐!数学这一科有着冰冻三尺非一日之寒的学科特点,在高考中的决定性作用亦举重非轻!夸张一点说数学是强校之本,升学之源。鉴于此,我们当举全组之力,充分发挥团队精神,既分工又合作,立足高考,保质保量地完成教育教学任务,在原来良好的基础上锦上添花。二、工作目标、全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。不拘形式不拘时间地点的加强交流,互
14、相之间取长补短,与时俱进,教学相长。在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。、在数学竞赛中,力争高二进入全国高中数学联赛的决赛阶段。、在数学教学方面,积极尝试新的教学方法,用新的教学理念武装自己。配合学校教学改革,力求在“生本教育”方面走出自己的路。三、主要措施、明确一个观念:高考好才是真的好。平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。、以老师的精心备课与充满激情的教学,换取学生学习高效率。、将学校和教研组安排的有关工作落到实处。四、活
15、动设想、按时完成学校(教导处,教研组)相关工作,如“激活课堂”,“同课异构”。、轮流出题,讲求命题质量,分章节搞好集体备课,形成电子化文稿。、每周集体备课一次,每次有中心发言人,组织进行教学研讨。、互相听课,以人之长,补己之短,完善自我。、认真组织好培优辅差工作以及竟赛的组织工作。、认真组织数学兴趣小组与数学选修课的开展。高二上学期数学教学计划 篇6数学分析1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线
16、和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展
17、,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。
18、4。圆锥曲线是我们生活中最基本的图形。圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。教育分析1。有助于学生数形结合思想的培养。解析几何的本质是用代数的方法研究图形的几何性质,它
19、沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。2。是培养学生运算能力的重要载体。运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,
20、这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。课标解读1。整体定位“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的几何证明选讲中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的几何证明选讲中,运用了综合几何的方法。“解析
21、几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。2。具体要求(1)直线与方程在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;能根据斜率判定两条直线平行或垂直;根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;能用解方程组的方法求两直线的交点坐标;探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距
22、离。(2)圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;能用直线和圆的方程解决一些简单的问题。(3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。(4)空间直角坐标系通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。标准中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把
23、握好“度”,特别是对于解析几何思想的理解不能要求一步到位。3。课标解读(1)要注重知识的发生与发展的过程解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,
24、同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。(2)在高中阶段,直线的斜率一般一般有三种表示方式用倾斜角的正切这是传统教材的方式,由于倾斜角是大于等于0小于180,倾斜角与其正切一一对应的(90除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。这需要先引入0到180的正切函数的概念。用向量内容结构1。知识内容2。 章节安排本章教学时间约需18课时,具体分配如下:1 直线与直线的方程 8课时2 圆与圆的方程 5课时3 空间直角坐标系 3课时第18页 共18页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页