222事件的相互性(教育精品).ppt

上传人:gsy****95 文档编号:88453902 上传时间:2023-04-26 格式:PPT 页数:25 大小:463.50KB
返回 下载 相关 举报
222事件的相互性(教育精品).ppt_第1页
第1页 / 共25页
222事件的相互性(教育精品).ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《222事件的相互性(教育精品).ppt》由会员分享,可在线阅读,更多相关《222事件的相互性(教育精品).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.2.2事件的相互独立性事件的相互独立性(1).条件概率的概念条件概率的概念(2).条件概率计算公式条件概率计算公式:复习回顾复习回顾设事件设事件A和事件和事件B,且,且P(A)0,在已知事件在已知事件A发生的条件发生的条件下事件下事件B发生的概率,叫做发生的概率,叫做条件概率条件概率.记作记作P(B|A).思考与探究思考与探究思考与探究思考与探究思考思考1:三张奖券有一张可以中奖。现由三名同学依次无放回地抽取,问:最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗?设A为事件“第一位同学没有中奖”。答:事件事件A的发生会影响事件的发生会影响事件B发生的概率发生的概率思考与探究思考

2、与探究思考与探究思考与探究思考思考1:三张奖券有一张可以中奖。现由三名同学依次有放回地抽取,问:最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗?设A为事件“第一位同学没有中奖”。事件A的发生不会影响事件B发生的概率。相互独立的概念相互独立的概念相互独立的概念相互独立的概念设设A,B为两个事件,如果为两个事件,如果则称事件则称事件A与事件与事件B相互独立。相互独立。1.定义法定义法:P(AB)=P(A)P(B)2.经验判断经验判断:A发生与否不影响发生与否不影响B发生的概率发生的概率 B发生与否不影响发生与否不影响A发生的概率发生的概率判断两个事件相互独立的方法判断两个事件相互独立

3、的方法注意注意:(1)互斥事件互斥事件:两个事件不可能同时发生两个事件不可能同时发生(2)相互独立事件相互独立事件:两个事件的发生彼此互不影响两个事件的发生彼此互不影响(1)必然事件必然事件 及不可能事件及不可能事件与任何事件与任何事件A相互独立相互独立.(2)若事件若事件A与与B相互独立相互独立,则以下三对事件也相互独立则以下三对事件也相互独立:相互独立事件的性质:例证例证练习练习1.1.判断下列事件是否为相互独立事件判断下列事件是否为相互独立事件.篮球比赛的篮球比赛的“罚球两次罚球两次”中,中,事件事件A A:第一次罚球,球进了:第一次罚球,球进了.事件事件B B:第二次罚球,球进了:第二

4、次罚球,球进了.袋中有三个红球,两个白球,采取不放回的取球袋中有三个红球,两个白球,采取不放回的取球.事件事件A A:第一次从中任取一个球是白球:第一次从中任取一个球是白球.事件事件B B:第二次从中任取一个球是白球:第二次从中任取一个球是白球.袋中有三个红球,两个白球,采取有放回的取球袋中有三个红球,两个白球,采取有放回的取球.事件事件A A:第一次从中任取一个球是白球:第一次从中任取一个球是白球.事件事件B B:第二次从中任取一个球是白球:第二次从中任取一个球是白球.练练2 2、判断下列各对事件的关系判断下列各对事件的关系(1 1)运动员甲射击一次,射中)运动员甲射击一次,射中9 9环与射

5、中环与射中8 8环;环;(2 2)甲乙两运动员各射击一次,甲射中)甲乙两运动员各射击一次,甲射中9 9环与乙环与乙射中射中8 8环;环;互斥互斥相互独立相互独立相互独立相互独立相互独立相互独立(4 4)某校车老师的夫人生儿子与叶老师)某校车老师的夫人生儿子与叶老师的夫人生儿子。的夫人生儿子。即即两两个个相相互互独独立立事事件件同同时时发发生生的的概概率率,等于每个事件发生的概率的积。等于每个事件发生的概率的积。2.2.推推广广:如如果果事事件件A A1 1,A A2 2,A An n相相互互独独立立,那那么这么这n n个事件同时发生的概率个事件同时发生的概率P(AP(A1 1A A2 2A A

6、n n)=P(A)=P(A1 1)P(AP(A2 2)P(AP(An n)1.1.若若A A、B B是相互是相互独立独立事件,则有事件,则有P(AB)=P(A)P(B)P(AB)=P(A)P(B)应用公式的前提:1.事件之间相互独立事件之间相互独立 2.这些事件同时发生这些事件同时发生.相互独立事件同时发生的概率公式相互独立事件同时发生的概率公式等于每个事件发生的概率的积等于每个事件发生的概率的积.即即:例题热身例题热身:已知已知A、B、C相互独立,试用相互独立,试用数学符号语言表示下列关系数学符号语言表示下列关系 A、B、C同时发生概率;同时发生概率;A、B、C都不发生的概率;都不发生的概率

7、;A、B、C中恰有一个发生的概率;中恰有一个发生的概率;A、B、C中恰有两个发生的概率;中恰有两个发生的概率;A、B、C中至少有一个发生的概率;中至少有一个发生的概率;(1)A发生且发生且B发生且发生且C发生发生(2)A不发生且不发生且B不发生且不发生且C不发生不发生练一练练一练:已知已知A、B、C相互独立,试用数相互独立,试用数学符号语言表示下列关系学符号语言表示下列关系 A、B、C同时发生概率;同时发生概率;A、B、C都不发生的概率;都不发生的概率;A、B、C中恰有一个发生的概率;中恰有一个发生的概率;A、B、C中恰有两个发生的概率;中恰有两个发生的概率;A、B、C中至少有一个发生的概率;

8、中至少有一个发生的概率;例题举例例题举例例题举例例题举例例例1、某商场推出两次开奖活动,凡购买一定、某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概同的兑奖活动。如果两次兑奖活动的中奖概率都为率都为0.05,求两次抽奖中以下事件的概率:,求两次抽奖中以下事件的概率:(1)“都抽到某一指定号码都抽到某一指定号码”;(2)“恰有一次抽到某一指定号码恰有一次抽到某一指定号码”;(3)“至少有一次抽到某一指定号码至少有一次抽到某

9、一指定号码”。例题解析例题解析例题解析例题解析解解:(1)记记“第一次抽奖抽到某一指定号码第一次抽奖抽到某一指定号码”为事件为事件A,“第二次抽奖抽到某一指定号码第二次抽奖抽到某一指定号码”为事件为事件B,则,则“两次抽奖都抽到某一指定号两次抽奖都抽到某一指定号码码”就是事件就是事件AB。(1)“都抽到某一指定号码都抽到某一指定号码”;由于两次的抽奖结果是互不影响的由于两次的抽奖结果是互不影响的,因此因此A和和B相互独立相互独立.于是由独立性可得于是由独立性可得,两次抽奖都抽到两次抽奖都抽到某一指定号码的概率为某一指定号码的概率为 P(AB)=P(A)P(B)=0.050.05=0.0025例

10、题举例例题举例例题举例例题举例(2)“恰有一次抽到某一指定号码恰有一次抽到某一指定号码”;解解:“两次抽奖恰有一次抽到某一指定号码两次抽奖恰有一次抽到某一指定号码”可以用可以用 表示。由于事件表示。由于事件 与与 互斥,根据概率加法公式和相互独立事件的互斥,根据概率加法公式和相互独立事件的定义,所求的概率为:定义,所求的概率为:例题举例例题举例例题举例例题举例(3)“至少有一次抽到某一指定号码至少有一次抽到某一指定号码”;解解:“两次抽奖至少有一次抽到某一指定号码两次抽奖至少有一次抽到某一指定号码”可可以用以用 表示。由于事件表示。由于事件 与与 两两互斥,根据概率加法公式和相互独立两两互斥,

11、根据概率加法公式和相互独立事件的定义,所求的概率为:事件的定义,所求的概率为:另解:另解:(逆向思考逆向思考)至少有一次抽中的概率为至少有一次抽中的概率为例例1、某商场推出两次开奖活动,凡购买一定价值的、某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都为两次兑奖活动的中奖概率都为0.05,求两次抽奖中,求两次抽奖中以下事件的概率:以下事件的概率:变式变式:“至多有一次抽到中奖号码至多有一次抽到中奖号码”。

12、题后感悟(1)求相互独立事件同时发生的概率的步骤是:首先确定各事件之间是相互独立的;确定这些事件可以同时发生;求出每个事件的概率,再求积(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件各个事件是相互独立的,而且它们同时发生练习练习1、若甲以、若甲以10发发8中,乙以中,乙以10发发7中的命中率打靶,中的命中率打靶,两人各射击一次,则他们都中靶的概率是两人各射击一次,则他们都中靶的概率是()(A)(B)(D)(C)练习练习2.某产品的制作需三道工序,设这三道工序出某产品的制作需三道工序,设这三道工序出现次品的概率分别是现次品的概率分别是P1,P2,P3。假设三道工序互不影。假

13、设三道工序互不影响,则制作出来的产品是正品的概率是响,则制作出来的产品是正品的概率是 D(1P1)(1P2)(1P3)练习练习3.甲、乙两人独立地解同一问题甲、乙两人独立地解同一问题,甲解决这个问甲解决这个问题的概率是题的概率是P1,,乙解决这个问题的概率是,乙解决这个问题的概率是P2,那,那么其中至少有么其中至少有1人解决这个问题的概率是多少?人解决这个问题的概率是多少?P1(1P2)+(1P1)P2+P1P2=P1+P2 P1P2 一个元件能正常工作的概率一个元件能正常工作的概率r称为该元件的可靠性。称为该元件的可靠性。由多个元件组成的系统能正常工作的概率称为系统的可由多个元件组成的系统能

14、正常工作的概率称为系统的可靠性。今设所用元件的可靠性都为靠性。今设所用元件的可靠性都为r(0(0r1)1),且各元件能,且各元件能否正常工作是互相独立的。试求各系统的可靠性。否正常工作是互相独立的。试求各系统的可靠性。P1=r2P2=1(1r)2P3=1(1r2)2P4=1(1r)22辨一辨互斥事件互斥事件相互独立事件相互独立事件 不可能同时发生的不可能同时发生的两个事件叫做互斥两个事件叫做互斥事件事件.如果事件如果事件A A(或(或B B)是否发生对事)是否发生对事件件B B(或(或A A)发生的概率没有影响,)发生的概率没有影响,这样的两个事件叫做相互独立事这样的两个事件叫做相互独立事件件P(A B)=P(A)+P(B)P(AB)=P(A)P(B)互斥事件互斥事件A A、B B中中有一个发生,有一个发生,相互独立事件相互独立事件A A、B B同时同时发生发生,计算计算公式公式 符符号号概概念念小结反思小结反思小结反思小结反思记作记作:AB(:AB(或或A+B)A+B)记作记作:AB一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A一个家庭中既有男孩又有女孩,B一个家庭中最多有一个女孩对下述两种情形,讨论A与B的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩思考思考

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁