《新课标全国卷2理科数学试题分类汇编-不等式选讲.doc》由会员分享,可在线阅读,更多相关《新课标全国卷2理科数学试题分类汇编-不等式选讲.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2011年2017年新课标全国卷理科数学试题分类汇编14不等式选讲(201723)已知,证明:(1);(2)(201624)已知函数,M为不等式的解集. ()求M;()证明:当a,bM时,.(201524)设a,b,c,d均为正数,且,证明:()若,则;()是的充要条件.(201424)设函数.()证明:f (x) 2; ()若f (3) ,则;()是的充要条件.(201524)解析:()因为,由题设得,因此.()(i)若,则,即,因为,所以,由()得.(ii)若,则,即,因为,所以,于是,因此,综上,是的充要条件.(201424)设函数.()证明:f (x) 2; ()若f (3) 5,求a
2、的取值范围.(201424)解析:(), ,当且仅当时,取“”号. 故.(),即:,或,解得:. 故a的取值范围是.(201324)设均为正数,且.证明:();().(201324)解析:()由a2b22ab,b2c22bc,c2a22ca,得a2b2c2abbcca. 由题设得(abc)21,即a2b2c22ab2bc2ca1. 所以3(abbcca)1,即abbcca.()因为,故2(abc),即abc. 所以1.(201224)已知函数f (x) = |x + a| + |x-2|.()当a =-3时,求不等式f (x) 3的解集;()若f (x) | x-4 |的解集包含1, 2,求a的取值范围.(201224)解析:() 当时,不等式或或或. 所以当时,不等式的解集为或.()的解集包含,即对恒成立,即对恒成立,即对恒成立,所以,即. 故的取值范围为.(201124)设函数,其中.()当时,求不等式的解集;()若不等式的解集为,求a的值.(201124)解析:()当时,可化为. 由此可得或. 故不等式的解集为或.()由 得,此不等式化为不等式组或,即或,因为,所以不等式组的解集为,由题设可得,故.