33圆心角(1)校级公开课课件--(教育精品).ppt

上传人:hwp****526 文档编号:88372950 上传时间:2023-04-25 格式:PPT 页数:51 大小:1.65MB
返回 下载 相关 举报
33圆心角(1)校级公开课课件--(教育精品).ppt_第1页
第1页 / 共51页
33圆心角(1)校级公开课课件--(教育精品).ppt_第2页
第2页 / 共51页
点击查看更多>>
资源描述

《33圆心角(1)校级公开课课件--(教育精品).ppt》由会员分享,可在线阅读,更多相关《33圆心角(1)校级公开课课件--(教育精品).ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、义务教育课程标准实验教科义务教育课程标准实验教科义务教育课程标准实验教科义务教育课程标准实验教科浙江版浙江版浙江版浙江版数学数学数学数学九年级上册九年级上册九年级上册九年级上册 水杯的盖子为什么做水杯的盖子为什么做成圆形成圆形?蕴含了圆的蕴含了圆的什么性质?什么性质?你可曾想过?你可曾想过?水是生命之源,水对于我们的身体,就好象氧气般重要!水是生命之源,水对于我们的身体,就好象氧气般重要!O OC CD DA AB BE E2 2、由、由圆的轴对称性圆的轴对称性得到:得到:1、圆是、圆是 图形,图形,轴对称轴对称直径所在的直径所在的直线直线每一条每一条 都是它的对称轴。都是它的对称轴。垂径定理

2、及逆定理垂径定理及逆定理.OAB圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OAB圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OAB圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OAB圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OBA圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OBA圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OAB圆圆绕圆心绕圆心旋转旋转探究新知:探究新知:.OBA180 所以所以圆是中心对称图形,圆心是圆是中心对称图形,圆心是它的它的对称中心。对称中心。圆圆绕圆心绕圆心旋转旋转180后后,仍仍与原来的圆重合与原来的圆重合。得出结论:得出结论:NO把圆把圆O O的半

3、径的半径ONON绕圆心绕圆心O O旋转旋转任意一个角度任意一个角度,继续探究:继续探究:NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转旋转任意一个角度任意一个角度,继续探究:继续探究:NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转旋转任意一个角度任意一个角度,继续探究:继续探究:NON把把圆圆绕圆心绕圆心旋转任意旋转任意一个角度后,一个角度后,把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转旋转任意一个角度任意一个角度,点点N仍与原来的圆重合仍与原来的圆重合。仍落在圆上。仍落在圆上。得出结论:得出结论:水杯的盖子为什么做成水杯的盖子为什么做成圆形圆形?蕴

4、含了圆的什么蕴含了圆的什么性质?性质?可见,可见,数学与数学与我们的我们的生活生活是是紧密相连紧密相连的!的!希望大家希望大家勤观察、多动脑勤观察、多动脑,做学习和生活中的,做学习和生活中的有心人有心人!解决疑问:解决疑问:如图中所示,如图中所示,NO NNO N 就是一个圆心角就是一个圆心角。NON形成概念:形成概念:顶点在圆心的角顶点在圆心的角叫叫圆心角圆心角义务教育课程标准实验教科义务教育课程标准实验教科义务教育课程标准实验教科义务教育课程标准实验教科浙江版浙江版浙江版浙江版数学数学数学数学九年级上册九年级上册九年级上册九年级上册 判别下列各图中的角是不是圆心角,并说明理由。判别下列各图

5、中的角是不是圆心角,并说明理由。及时反馈:及时反馈:CDoAB探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。AB=CD,AB=CD 猜想:猜想:证明:证明:条件:条件:AOB=CODCDoAB探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:条件:条件:AOB=CODoABCD探索:探索:在在同一个圆同一个圆中,两个中,两个

6、相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。AB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:

7、证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之

8、间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同

9、一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:oABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系。之间都有什么关系。条件:条件:AOB=CODAB=CD,AB=CD 猜想:猜想:证明:证明:条件:条件:AOB=CODoABCD探索:探索:在在同一个圆同一个圆中,两个中,两个相等的圆心角相等的圆心角所对的所对的两条两条弧、两条弦弧、两条弦之间都有什么关系

10、。之间都有什么关系。AB=CD,AB=CD 猜想:猜想:证明证明:OA=OC,OB=OD AOB=COD,把把 COD连同连同 CD、弦弦CD 绕圆心绕圆心O 旋转,旋转,当点当点A与点与点C重合时,重合时,点点B与点与点D也重合。也重合。AB=CD,AB=CD ABCDo弦弦AB和弦和弦对应的对应的弦心距弦心距什么关系?什么关系?在同圆中,在同圆中,AOB=CODAB=CD AB=CD相等的圆心角相等的圆心角所对的弧相等,所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距相等所对弦的弦心距相等.几何表述:几何表述:OE=OF形成定理:形成定理:圆心角定理圆心角定理 如图,如图,O 和和

11、 O 是等圆,是等圆,如果如果 AOB=AOB 那么那么 AB=AB、AB=AB、OM=OM?对于对于等圆等圆的情况的情况 ,命题成立命题成立。因为两个因为两个等圆可叠合成同圆等圆可叠合成同圆,所以等圆问题可转化为,所以等圆问题可转化为同圆问题同圆问题.同圆变等圆:同圆变等圆:ABCDo圆心角定理圆心角定理:在同圆或等圆中,在同圆或等圆中,AOB=CODAB=CD 相等的圆心角相等的圆心角所对的弧相等,所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距相等所对弦的弦心距相等.几何表述:几何表述:OE=OFAB=CD在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等相

12、等的圆心角所对的弧相等,所对的弦也相等。【注意注意】:1.1.去掉去掉去掉去掉“在同圆或等圆中在同圆或等圆中在同圆或等圆中在同圆或等圆中”结论不一定成结论不一定成结论不一定成结论不一定成立。立。立。立。2.2.要证弧(弦)相等,只需证它们所对的要证弧(弦)相等,只需证它们所对的要证弧(弦)相等,只需证它们所对的要证弧(弦)相等,只需证它们所对的圆心角圆心角圆心角圆心角相等。相等。相等。相等。分析定理:分析定理:圆心角定理圆心角定理ABCDo应用新知:应用新知:OABCD12例例 已知:如图已知:如图,1=2.,1=2.求证:求证:AC=BD.AC=BD.【变式变式】已知:如图已知:如图,1=2

13、.,1=2.求证:求证:AC=BDAC=BD.圆心角定理圆心角定理圆心角相等圆心角相等所对弧相等所对弧相等所对弦相等所对弦相等所对弦的弦心距相等所对弦的弦心距相等证明:证明:1=2DC=BA()DC+BC=BA+BC 即即 BD=AC反思:反思:圆心角定理圆心角定理你能将你能将二等分吗?二等分吗?作法作法:作作的直径。的直径。点点A A、B B就把就把两等分。两等分。再探新知:再探新知:用直尺和圆规你能把用直尺和圆规你能把四等分四等分吗?吗?作法作法:、作、作 的直径。的直径。、过点、过点O作作,交,交 于点和于点和 点点。点,点,就把就把 四等分四等分你能将任意一个你能将任意一个圆圆六等分六

14、等分吗?吗?若要把若要把圆圆作作n等分等分,关键是先作什么?关键是先作什么?先先n n等分等分以圆心以圆心O O为顶点的周角。为顶点的周角。再探新知:再探新知:A B则每一份的圆心角的度数是则每一份的圆心角的度数是 。因为相等的圆心角所对的弧因为相等的圆心角所对的弧 ,所以每一份的圆心角所对的弧也所以每一份的圆心角所对的弧也 。1相等相等相等相等再探新知:再探新知:若按刚才这种方法把一个若按刚才这种方法把一个圆分成圆分成360360份份.我们把我们把1 1的圆心角所对的弧叫做的圆心角所对的弧叫做1 1的弧的弧.定义:定义:弧的度数弧的度数80的弧的弧80概括新知:概括新知:1 1的圆心角所对的

15、弧叫做的圆心角所对的弧叫做1 1的弧的弧.性质性质:弧的度数和它所对圆心角的度数相等。弧的度数和它所对圆心角的度数相等。弧的度数:弧的度数:写法:写法:若若COD=80COD=80,则则CDCD的度数是的度数是8080注:注:不可写成不可写成CD=CD=COD=80COD=80,但可写成但可写成 CD=CD=COD=80COD=80m m如图:已知在如图:已知在O中,中,AOB=45,OBC=35则则AB的度数为的度数为 .BC的度数为的度数为 .巩固新知:巩固新知:453545110课堂小结:课堂小结:1、圆是、圆是中心对称图形中心对称图形,圆具有,圆具有旋转不变性;旋转不变性;2、圆心角定

16、理:、圆心角定理:3、弧的度数:、弧的度数:1的圆心角所对的弧叫做的圆心角所对的弧叫做1的弧的弧.在同圆或等圆中,在同圆或等圆中,相等的圆心角相等的圆心角所对的弧相等,所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距相等所对弦的弦心距相等.性质性质:弧的度数和它所对的圆心角的度数相等。弧的度数和它所对的圆心角的度数相等。1.下列说法正确的是(下列说法正确的是()A.相等的圆心角所对的弧相等。相等的圆心角所对的弧相等。B.相等的圆心角所对的弦相等。相等的圆心角所对的弦相等。C.度数相等的两条弧相等。度数相等的两条弧相等。D.相等的圆心角所对的弧的度数相等。相等的圆心角所对的弧的度数相等。

17、DO如图:点如图:点C为圆心,为圆心,ACB=90,B=25求求AD的度数的度数256565拓展延伸:拓展延伸:已知:已知:AB为为O直径,直径,ACOD,且且C、D在圆上。在圆上。求证:求证:CD=BD拓展延伸:拓展延伸:已知:已知:AB=AC,BAC=50求求AB,BC,CA的度的度数数 拓展延伸:拓展延伸:如图,如图,C C是圆是圆0 0的直径的直径ABAB上一点上一点,过点过点C C作弦作弦DEDE,使,使CD=COCD=CO,若,若 ADAD的度数为的度数为3030,求,求BEBE的的度数。度数。ABCDOE已知:如图,AB为的弦,E、F是AB上的两点,且AE=BF,OE、OF分别交AB于点C、D求证:AC=BD

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁