《黑龙江省大庆市第十九中学2023届中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省大庆市第十九中学2023届中考一模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在以下四个图案中,是轴对称图形的是()ABCD2如图,将OAB绕O点逆时针旋转60得到OCD,若OA4,AOB35,则下列结论错误的是()ABDO60BBOC25COC4DBD43如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )A点的左边B点与点之间C
2、点与点之间D点的右边4如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q5如图是二次函数yax2+bx+c的图象,对于下列说法:ac0,2a+b0,4acb2,a+b+c0,当x0时,y随x的增大而减小,其中正确的是()ABCD62017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里数字5550用科学记数法表示为( )A0.555104B5.55103C5.55104D55.51037二次函数y=ax2+bx+c(a0)的图象如
3、图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD8某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为( )A6,5B6,6C5,5D5,69如图,已知l1l2,A=40,1=60,则2的度数为( )A40B60C80D10010方程x23x+20的解是()Ax11,x22Bx11,x22Cx11,x22Dx11,x22二、填空题(共7小题,每小题3分,满分21分)11已知抛物线开口向上且经过点,双曲线经过点,
4、给出下列结论:;,c是关于x的一元二次方程的两个实数根;其中正确结论是_填写序号12如图,在平面直角坐标系中,函数y=(x0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为_13如图,已知O1与O2相交于A、B两点,延长连心线O1O2交O2于点P,联结PA、PB,若APB=60,AP=6,那么O2的半径等于_14如图,把RtABC放在直角坐标系内,其中CAB=90,BC=5,点A,B的坐标分别为(1,0),(4,0),将ABC沿x轴向左平移,当点C落在直线y=2x6上时,则点C沿x轴向左平移了_个单位长度15如图,在中,点D、E分别在边、上,且,如果,那么_16已知
5、二次函数中,函数y与x的部分对应值如下:.-101 23. 105212.则当时,x的取值范围是_.17如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是_三、解答题(共7小题,满分69分)18(10分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.19(5分) 先化简,再求值: ,其中x是满足不等式(x1)的非负整数解20(8分)某纺织厂生产的产品,原
6、来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.21(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C(1)求一次函数与反比例函数的解析式;(2)求ABC的面积.22(10分)对于平面直角坐标系xOy中的任意两点
7、M,N,给出如下定义:点M与点N的“折线距离”为:例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:根据以上定义,解决下列问题:已知点P(3,-2)若点A(-2,-1),则d(P,A)= ;若点B(b,2),且d(P,B)=5,则b= ;已知点C(m,n)是直线上的一个动点,且d(P,C)3,求m的取值范围F的半径为1,圆心F的坐标为(0,t),若F上存在点E,使d(E,O)=2,直接写出t的取值范围23(12分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造如图,为体育馆改造的截面示意图已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角
8、ABC为45,原坡脚B与场馆中央的运动区边界的安全距离BD为5米如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角EFG为37若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由(参考数据:sin37,tan37)24(14分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90,AC4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接B
9、D,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:A【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、D【解析】由OAB绕O点逆时针旋转60得到OCD知AOC=BOD=60,AO=CO=4、BO=DO,据此可判断C;由AOC、BOD是等边三角形可判断A
10、选项;由AOB=35,AOC=60可判断B选项,据此可得答案【详解】解:OAB绕O点逆时针旋转60得到OCD,AOC=BOD=60,AO=CO=4、BO=DO,故C选项正确;则AOC、BOD是等边三角形,BDO=60,故A选项正确;AOB=35,AOC=60,BOC=AOC-AOB=60-35=25,故B选项正确.故选D【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等及等边三角形的判定和性质3、C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的
11、位置,即可得解【详解】|a|c|b|,点A到原点的距离最大,点C其次,点B最小,又AB=BC,原点O的位置是在点B、C之间且靠近点B的地方故选:C【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键4、D【解析】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点M与N之间,这四个数中绝对值最大的数对应的点是点Q故选D5、C【解析】根据二次函数的图象与性质即可求出答案【详解】解:由图象可知:a0,c0,ac0,故错误;由于对称轴可知:1,2a+b0,故正确;由于抛物线与x轴有两个交点,b24ac0,故正确;由图象可知:x1时,ya+b+c0,故正确;当x时,y随着x的增大而
12、增大,故错误;故选:C【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型6、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5550=5.551故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x
13、3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理8、A【解析】根据众数、中位数的定义分别进行解答即可【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故
14、选A【点睛】本题考查了众数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数9、D【解析】根据两直线平行,内错角相等可得3=1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:l1l2,3=1=60,2=A+3=40+60=100故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键10、A【解析】将
15、方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解【详解】解:原方程可化为:(x1)(x1)0,x11,x11故选:A【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),bc0,故正确;a1时,则b、c均小于0,此时b+c0,当a=1
16、时,b+c=0,则与题意矛盾,当0a1时,则b、c均大于0,此时b+c0,故错误;可以转化为:,得x=b或x=c,故正确;b,c是关于x的一元二次方程的两个实数根,abc=a(b+c)=a+(a1)=2a1,当a1时,2a13,当0a1时,12a13,故错误;故答案为12、2【解析】设矩形OABC中点B的坐标为,点E、F是AB、BC的中点,点E、F的坐标分别为:、,点E、F都在反比例函数的图象上,SOCF=,SOAE=,S矩形OABC=,S四边形OEBF= S矩形OABC- SOAE-SOCF=.即四边形OEBF的面积为2.点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连
17、接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则SOPD=.13、2【解析】由题意得出ABP为等边三角形,在RtACO2中,AO2=即可.【详解】由题意易知:PO1AB,APB=60ABP为等边三角形,AC=BC=3圆心角AO2O1=60 在RtACO2中,AO2=2.故答案为2.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.14、1【解析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在RtABC中,AB=1(1)=3,BC=5,AC=1,点C的坐标为(1,1)当y=2x6=1时,x=5
18、,1(5)=1,点C沿x轴向左平移1个单位长度才能落在直线y=2x6上故答案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.15、【解析】根据,得出,利用相似三角形的性质解答即可【详解】,即,故答案为:【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解16、0x4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y5时,x的取值范围为0x4.故
19、答案为0x0且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价产品的数量-产品的成本价产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关
20、系,列出函数式进行求解21、(1)y=2x5,;(2)【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积试题解析:(1)把A(2,1)代入反比例解析式得:1=,即m=2,反比例解析式为,把B(,n)代入反比例解析式得:n=4,即B(,4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=5,则一次函数解析式为y=2x5;(2)如图,SABC=考点:反比例函数与一次函数的交点问题;一
21、次函数及其应用;反比例函数及其应用22、(1) 6, 2或4, 1m4;(2)或.【解析】(1)根据“折线距离”的定义直接列式计算;根据“折线距离”的定义列出方程,求解即可;根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围【详解】解:(1) b=2或4 ,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1m4 (2)设E(x,y),则,如图,若点E在F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关
22、键.23、不满足安全要求,理由见解析【解析】在RtABC中,由ACB=90,AC=15m,ABC=45可求得BC=15m;在RtEGD中,由EGD=90,EG=15m,EFG=37,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=22.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在RtABC中,AC=15m,ABC=45,BC=15m在RtEFG中,EG=15m,EFG=37,GF=20mEG=AC=15m,ACBC,EGBC,EGAC,四
23、边形EGCA是矩形,GC=EA=2m,DF=GC+BC+BD-GF=2+15+5-20=22.5.施工方提供的设计方案不满足安全要求24、 (1)见解析;(2) ACBD,理由见解析;(3)【解析】(1)直接利用相似三角形的判定方法得出BCEDCP,进而得出答案;(2)首先得出PCEDCB,进而求出ACB=CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到PBD的面积【详解】(1)证明:BCE和CDP均为等腰直角三角形,ECBPCD45,CEBCPD90,BCEDCP,;(2)解:结论:ACBD,理由:PCE+ECDBCD+ECD45,PCEBCD,又,PCEDCB,CBDCEP90,ACB90,ACBCBD,ACBD;(3)解:如图所示:作PMBD于M,AC4,ABC和BEC均为等腰直角三角形,BECE4,PCEDCB,即,BD,PBMCBDCBP45,BPBE+PE4+15,PM5sin45PBD的面积SBDPM【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.