《2023届黑龙江省大庆市一中学中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省大庆市一中学中考五模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x3时,y18,那么当半
2、径为6cm时,成本为()A18元B36元C54元D72元2二次函数y=ax2+bx+c(a0)的图象如图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD3若,是一元二次方程3x2+2x9=0的两根,则的值是( ).ABCD43的绝对值是()A3B3C-D5二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c06已知点A、B、C是直径为6cm的O上的点,且AB=3cm,AC=3 cm,
3、则BAC的度数为()A15B75或15C105或15D75或1057已知m,n,则代数式的值为 ()A3B3C5D98已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y29下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等10若正多边形的一个内角是150,则该正多边形的边数是( )A6 B12 C16 D1811一个正比例函数的图象过点(2,3),它的表达式为()ABCD12在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线有且只有一个公共点;经过直线外一点有且只有一条直线与已知直线垂直
4、;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_14九章算术是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是_步15若式子有意义,则x的取值范围是_16某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级现随机抽取了500名学
5、生的评价结果作为样本进行分析,绘制了如图所示的统计图已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_人17计算:()1(5)0_18甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在44的正方形方格中,ABC和DEF的顶点都在边长为1的小正方形的顶点上. 填空:ABC= ,BC= ;判断ABC与DEF是
6、否相似,并证明你的结论.20(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案21(6分)如图,AEFD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:ABEDCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形22(8分)计算: .23(8分)如图,点A在MON的边ON上,ABOM于B,AE=OB,DEON于E,AD=AO,DCOM于C求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.24(10分)定义:
7、若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围25(10分)如图,在O的内接四边形ABCD中,BCD=120,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径26(12分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F(1)求证:四
8、边形BDFC是平行四边形;(2)若BCD是等腰三角形,求四边形BDFC的面积27(12分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_只;乙在提高生产速度之前已生产了零件_只;(2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有
9、一项是符合题目要求的)1、D【解析】设y与x之间的函数关系式为ykx2,由待定系数法就可以求出解析式,再求出x6时y的值即可得【详解】解:根据题意设ykx2,当x3时,y18,18k9,则k,ykx2x22x2,当x6时,y23672,故选:D【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键2、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1
10、y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理3、C【解析】分析:根据根与系数的关系可得出+=-、=-3,将其代入=中即可求出结论详解:、是一元二次方程3x2+2x-9=0的两根,+=-,=-3,=故选C点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键4、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝
11、对值是它本身,负数的绝对值是它的相反数.5、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间
12、的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值6、C【解析】解:如图1AD为直径,ABD=ACD=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABD中,AD=6,AC=3,CAD=45,则BAC=105;如图2,AD为直径,ABD=ABC=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABC中,AD=6,AC=3,CAD=45,则BAC=15故选C点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用7、B【解析】由已
13、知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.8、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答9、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D1
14、0、B【解析】设多边形的边数为n,则有(n-2)180=n150,解得:n=12,故选B.11、A【解析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx,根据题意得:2k=3,解得:k= 函数的解析式是:故选A12、C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解【详解】解:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,正确的有共3个,故选C【点睛】
15、本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120,根据四边形内角和360,得到ABG+ADG=180此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+
16、GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键14、【解析】如图,根据正方形的性质得:DEBC,则ADEACB,列比例式可得结论.【详解】如图,四边形CDEF是正方形,CD=ED,DECF,设ED=x,则CD=x,AD=12-x,DECF,ADE=C,AED=B,ADEACB,x=,故答案为.【点睛】本题考查了相似三角形的
17、判定和性质、正方形的性质,设未知数,构建方程是解题的关键15、x2且x1【解析】由知,又在分母上,故答案为且.16、16000【解析】用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果【详解】A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000=16000,故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据17、1【解析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式21
18、1,故答案为1【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大18、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) (2)ABCDEF.【解析】(1)根据已知条件,结合网格可以求出ABC的度数,根据,ABC和DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明ABC与DEF相似【
19、详解】(1) 故答案为 (2)ABCDEF.证明:在44的正方形方格中, ABC=DEF. ABCDEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.20、可以求出A、B之间的距离为111.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.21、(1)证明见解析;(2)证明见解析【解析】(1)根据平行线性质求出B=C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;(2)借助(
20、1)中结论ABEDCF,可证出AE平行且等于DF,即可证出结论.证明:(1)如图,ABCD,B=CBF=CEBE=CF在ABE与DCF中,ABEDCF(SAS); (2)如图,连接AF、DE由(1)知,ABEDCF,AE=DF,AEB=DFC,AEF=DFE,AEDF,以A、F、D、E为顶点的四边形是平行四边形22、【解析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式 .【点睛】此题主要考查了实数运算,正确化简各数是解题关键23、(1)证明见解析;(2)AB、AD的长分别为2和1【解析】(1)证RtABO
21、RtDEA(HL)得AOB=DAE,ADBC证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知RtABORtDEA,AB=DE=2设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:.【详解】(1)证明:ABOM于B,DEON于E,.在RtABO与RtDEA中,RtABORtDEA(HL)AOB=DAEADBC又ABOM,DCOM,ABDC四边形ABCD是平行四边形,四边形ABCD是矩形; (2)由(1)知RtABORtDEA,AB=DE=2 设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:,解得AD=1即AB、AD的长分别为2和1【点睛
22、】矩形的判定和性质;掌握判断定证三角形全等是关键.24、 (1) ac3;(3)a=1;m或m【解析】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1
23、-1且-1x33:列方程组即可得到结论【详解】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p,SABC=31=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y
24、轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键25、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120,根据角平分线的定义得:ACDACB60,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60.根据三个角是60的三角形
25、是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60,由同弧所对的圆周角相等,得BEDBAD60.根据直径所对的圆周角是直角得,EBD90,则EDB30,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120,CA平分BCD,ACD=ACB=60,由圆周角定理得,ADB=ACB=60,ABD=ACD=60,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120,DOH=60,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形
26、为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.26、(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:BD=BC,BD=CD,BC=CD,分别求四边形的面积试题解析:(1)证明:A=ABC=90AFBCCBE=DFE,BCE=FDEE是边CD的中点CE=DEBCEFDE(AAS)BE=EF四边形BDFC是平行四边形(2)若BCD是等腰三角形若BD=DC在RtABD中,AB=四边形BDFC的面积为S
27、=3=6;若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;若BC=DC过D作DGBC,垂足为G在RtCDG中,DG=四边形BDFC的面积为S=考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积27、(1)25,150;(2)y甲=25x(0x20),;(3)x14,150【解析】解:(1)甲每分钟生产25只;提高生产速度之前乙的生产速度15只/分,故乙在提高生产速度之前已生产了零件:1510150只;(2)结合后图象可得:甲:y甲25x(0x20);乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,乙:y乙15x(0x10),当10x17时,设y乙kxb,把(10,150)、(17,500),代入可得:10kb150,17kb500,解得:k50,b350,故y乙50x350(10x17)综上可得:y甲25x(0x20);(3)令y甲y乙,得25x50x350,解得:x14,此时y甲y乙350只,故甲工人还有150只未生产